分析 (1)利用递推关系:当n=1时,a1+S1=1,解得a1.当n≥2时,an=Sn-Sn-1,利用等比数列的通项公式即可得出.
(2)bn+1=bn-2,变形为bn+1-1=3(bn-1),利用等比数列的定义及其通项公式即可得出.
(3)${c_n}={(\frac{1}{2})^n}{log_3}{3^{2n-1}}=(2n-1)•{(\frac{1}{2})^n}$.再利用“错位相减法”与等比数列的求和公式即可得出.
解答 解:(1)①当n=1时,a1+S1=1,∴${a_1}=\frac{1}{2}$.
②当n≥2时,an=Sn-Sn-1=(1-an)-(1-an-1)=an-1-an,
∴${a_n}=\frac{1}{2}{a_{n-1}}$,
∴数列{an}是以${a_1}=\frac{1}{2}$为首项,公比为$\frac{1}{2}$的等比数列;
∴${a_n}=\frac{1}{2}•{(\frac{1}{2})^{n-1}}={(\frac{1}{2})^n}$.
(2)证明:∵bn+1=bn-2,∴bn+1-1=3(bn-1),
又∵b1-1=3,∴{bn-1}是以3为首项,3为公比的等比数列,
∴${b_n}-1={3^n}$,∴${b_n}={3^n}+1$.
(3)${c_n}={(\frac{1}{2})^n}{log_3}{3^{2n-1}}=(2n-1)•{(\frac{1}{2})^n}$.
∴${T_n}=1×\frac{1}{2}+3×{(\frac{1}{2})^2}+5×{(\frac{1}{2})^3}+…+(2n-3)•{(\frac{1}{2})^{n-1}}+(2n-1)•{(\frac{1}{2})^n}$,$\frac{1}{2}{T_n}=1×{(\frac{1}{2})^2}+3×{(\frac{1}{2})^3}+5×{(\frac{1}{2})^4}+…+(2n-3)•{(\frac{1}{2})^n}+(2n-1)•{(\frac{1}{2})^{n+1}}$,
∴$(1-\frac{1}{2}){T_n}=1+2[{(\frac{1}{2})^2}+{(\frac{1}{2})^3}+…+{(\frac{1}{2})^{n-1}}+{(\frac{1}{2})^n}]-(2n-1)•{(\frac{1}{2})^{n+1}}$
=$\frac{1}{2}+2×\frac{{{{(\frac{1}{2})}^2}(1-{{(\frac{1}{2})}^{n-1}})}}{{1-\frac{1}{2}}}-(2n-1)•{(\frac{1}{2})^{n+1}}=\frac{1}{2}+1-{(\frac{1}{2})^{n-1}}-(2n-1)•{(\frac{1}{2})^{n+1}}=-4×{(\frac{1}{2})^{n+1}}-(2n-1)•{(\frac{1}{2})^{n+1}}$
=$\frac{3}{2}-(2n+3)•{(\frac{1}{2})^{n+1}}$,
∴${T_n}=3-\frac{2n+3}{2^n}$.
点评 本题考查了等比数列与等差数列的通项公式与求和公式“错位相减法”、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2015}$ | B. | $\frac{1}{2016}$ | C. | $\frac{2014}{2015}$ | D. | $\frac{2015}{2016}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | [4,8) | C. | (4,8) | D. | (1,8) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com