精英家教网 > 高中数学 > 题目详情
5.数列{an}的前n项和为Sn,且Sn+an=1(n∈N*),数列{bn}满足b1=4,bn+1=3bn-2(n∈N*).
(1)求数列{an}的通项公式;
(2)求证:数列{bn-1}为等比数列,并求数列{bn}的通项公式;
(3)设数列{cn}满足cn=anlog3(b2n-1-1),其前n项和为Tn,求Tn

分析 (1)利用递推关系:当n=1时,a1+S1=1,解得a1.当n≥2时,an=Sn-Sn-1,利用等比数列的通项公式即可得出.
(2)bn+1=bn-2,变形为bn+1-1=3(bn-1),利用等比数列的定义及其通项公式即可得出.
(3)${c_n}={(\frac{1}{2})^n}{log_3}{3^{2n-1}}=(2n-1)•{(\frac{1}{2})^n}$.再利用“错位相减法”与等比数列的求和公式即可得出.

解答 解:(1)①当n=1时,a1+S1=1,∴${a_1}=\frac{1}{2}$.
②当n≥2时,an=Sn-Sn-1=(1-an)-(1-an-1)=an-1-an
∴${a_n}=\frac{1}{2}{a_{n-1}}$,
∴数列{an}是以${a_1}=\frac{1}{2}$为首项,公比为$\frac{1}{2}$的等比数列;
∴${a_n}=\frac{1}{2}•{(\frac{1}{2})^{n-1}}={(\frac{1}{2})^n}$.
(2)证明:∵bn+1=bn-2,∴bn+1-1=3(bn-1),
又∵b1-1=3,∴{bn-1}是以3为首项,3为公比的等比数列,
∴${b_n}-1={3^n}$,∴${b_n}={3^n}+1$.
(3)${c_n}={(\frac{1}{2})^n}{log_3}{3^{2n-1}}=(2n-1)•{(\frac{1}{2})^n}$.
∴${T_n}=1×\frac{1}{2}+3×{(\frac{1}{2})^2}+5×{(\frac{1}{2})^3}+…+(2n-3)•{(\frac{1}{2})^{n-1}}+(2n-1)•{(\frac{1}{2})^n}$,$\frac{1}{2}{T_n}=1×{(\frac{1}{2})^2}+3×{(\frac{1}{2})^3}+5×{(\frac{1}{2})^4}+…+(2n-3)•{(\frac{1}{2})^n}+(2n-1)•{(\frac{1}{2})^{n+1}}$,
∴$(1-\frac{1}{2}){T_n}=1+2[{(\frac{1}{2})^2}+{(\frac{1}{2})^3}+…+{(\frac{1}{2})^{n-1}}+{(\frac{1}{2})^n}]-(2n-1)•{(\frac{1}{2})^{n+1}}$
=$\frac{1}{2}+2×\frac{{{{(\frac{1}{2})}^2}(1-{{(\frac{1}{2})}^{n-1}})}}{{1-\frac{1}{2}}}-(2n-1)•{(\frac{1}{2})^{n+1}}=\frac{1}{2}+1-{(\frac{1}{2})^{n-1}}-(2n-1)•{(\frac{1}{2})^{n+1}}=-4×{(\frac{1}{2})^{n+1}}-(2n-1)•{(\frac{1}{2})^{n+1}}$
=$\frac{3}{2}-(2n+3)•{(\frac{1}{2})^{n+1}}$,
∴${T_n}=3-\frac{2n+3}{2^n}$.

点评 本题考查了等比数列与等差数列的通项公式与求和公式“错位相减法”、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若“m<a”是“函数g(x)=5-x+m的图象不过第一象限”的必要不充分条件,则实数a的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设抛物线y2=2px(p>0)的焦点为F,准线为l,点A(0,2).若线段FA的中点B在抛物线上,则F到l的距离为$\sqrt{2}$,|FB|=$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.式子$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2015×2016}$的值是(  )
A.$\frac{1}{2015}$B.$\frac{1}{2016}$C.$\frac{2014}{2015}$D.$\frac{2015}{2016}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.十进制数25转化为二进制数为  (  )
A.11001(2)B.10101(2)C.10011(2)D.11100(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=$\left\{\begin{array}{l}{(a-1)x+1,x>1}\\{(4-\frac{a}{2})x+2,x≤1}\end{array}\right.$是R上的单调递增函数,则实数a的取值范围为(  )
A.(1,+∞)B.[4,8)C.(4,8)D.(1,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若直线x+(1+m)y-2=0和直线mx+2y+4=0平行,则m的值为(  )
A.1B.-2C.1或-2D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}中,公差d>0,又a2•a3=15,a1+a4=8.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记数列bn=an•2n,数列{bn}的前n项和记为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线x2-$\frac{y^2}{m^2}$=1的虚轴长是实轴长的2倍,则实数m的值是(  )
A.±1B.±2C.2D.4

查看答案和解析>>

同步练习册答案