精英家教网 > 高中数学 > 题目详情
20.十进制数25转化为二进制数为  (  )
A.11001(2)B.10101(2)C.10011(2)D.11100(2)

分析 把一个十进制的数转换为相应的二进制数,用2反复去除要被转换的十进制数,直到商是0为止,
所得余数(从末位读起)就是该十进制数的二进制表示.

解答 解:∵25=2×12+1,12=2×6+0,6=2×3+0,3=2×1+1,1=2×0+1;
∴25=11001(2)
故选:A.

点评 本题主要考查了将十进制数转化为二进制数,理解除2取余法是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=|x2-5x+4|,f(x)的单调增区间为$[1,\frac{5}{2}]$,[4,+∞);若方程f(x)=mx有三个不相等的实根,则m=1,且三个实根的和是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)设x≥1,y≥1,证明x+y+$\frac{1}{xy}$≤$\frac{1}{x}$+$\frac{1}{y}$+xy;
(2)设a,b,c都是正数,求证:$\frac{1}{2a}$+$\frac{1}{2b}$+$\frac{1}{2c}$≥$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l的参数方程为:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ-2cosθ
(Ⅰ)求曲线C的普通方程.
(Ⅱ)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,是函数y=f(x)的导函数y=f′(x)的图象,则下面哪一个判断是正确的(  )
A.在区间(-3,1)内y=f(x)是增函数B.在区间(1,3)内y=f(x)是减函数
C.在区间(4,5)内y=f(x)是增函数D.在x=2时,y=f(x)取得极小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}的前n项和为Sn,且Sn+an=1(n∈N*),数列{bn}满足b1=4,bn+1=3bn-2(n∈N*).
(1)求数列{an}的通项公式;
(2)求证:数列{bn-1}为等比数列,并求数列{bn}的通项公式;
(3)设数列{cn}满足cn=anlog3(b2n-1-1),其前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x∈R|ax2-2x+1=0}
(1)若集合A中只有一个元素,用列举法写出集合A;
(2)若集合A中至多只有一个元素,求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,既是偶函数,又在(0,+∞)上是单调减函数的是(  )
A.y=-2|x|B.$y={x^{\frac{1}{2}}}$C.y=ln|x+1|D.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.log39=(  )
A.9B.3C.2D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案