【题目】已知曲线C 的参数方程为 (α为参数),以直角坐标系原点O 为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;
(Ⅱ)设l1:θ= ,l2:θ= ,若l 1、l2与曲线C 相交于异于原点的两点 A、B,求△AOB的面积.
【答案】解:(Ⅰ)∵曲线C的参数方程为 (α为参数),利用sin2α+cos2α=1, , =y﹣1,可得:(x﹣2)2+(y﹣1)2=5.
∴曲线C的普通方程为(x﹣2)2+(y﹣1)2=5.
将 代入并化简得:ρ=4cosθ+2sinθ
即曲线C的极坐标方程为ρ=4cosθ+2sinθ.
(Ⅱ)解法一:在极坐标系中,C:ρ=4cosθ+2sinθ
∴由 得到 ;
同理 .
又∵
∴ .
即△AOB的面积为 .
解法二:在平面直角坐标系中,C:(x﹣2)2+(y﹣1)2=5
l1:θ= ,l2:θ= ,可得 ,
∴由 得
∴
同理
∴ ,
又∵
∴
即△AOB的面积为 .
【解析】(Ⅰ)将C参数方程化为普通方程,利用 代入,可得曲线C 的极坐标方程.(Ⅱ)法一:利用参数的几何意义,求|OB|,|OA|,∠AOB=60°,即可求△AOB的面积,法二:在平面直角坐标系中,根据l1:θ= ,l2:θ= ,求出方程与圆C求解交点A和B,|OB|,|OA|,∠AOB=60°,即可求△AOB的面积,
科目:高中数学 来源: 题型:
【题目】斜率为 的直线l与椭圆 + =1(a>b>0)交于不同的两点A、B.若点A、B在x轴上的射影恰好为椭圆的两个焦点.
(1)求椭圆的离心率;
(2)P是椭圆上的动点,若△PAB面积最大值是4 ,求该椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C1: =1,双曲线C2: =1(a>0,b>0)的左、右焦点分别为F1 , F2 , M 是双曲线C2 一条渐近线上的点,且OM⊥MF2 , 若△OMF2的面积为 16,且双曲线C1 , C2的离心率相同,则双曲线C2的实轴长为( )
A.4
B.8
C.16
D.32
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥P﹣ABCD的三视图如图所示,其五个顶点都在同一球面上,若四棱锥P﹣ABCD的侧面积等于4(1+ ),则该外接球的表面积是( )
A.4π
B.12π
C.24π
D.36π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC 的内角 A,B,C 的对边分别是a,b,c,且 a= b cosC+c sinB. (Ⅰ)求角B 的大小;
(Ⅱ)若点M 为BC的中点,且 AM=AC,求sin∠BAC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】极坐标系与直角坐标系xoy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为ρsin2θ=8cosθ. (I)求C的直角坐标方程;
(Ⅱ)设直线l与曲线C交于A,B两点,求弦长|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等比数列{an}中,公比q>1,且满足a2+a3+a4=28,a3+2是a2与a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=log2an+5 , 且数列{bn}的前n项的和为Sn , 求数列{ }的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大学开设甲、乙、丙三门选修课供学生任意选修(也可不选),假设学生是否选修哪门课彼此互不影响.已知某学生只选修甲一门课的概率为0.08,选修甲和乙两门课的概率为0.12,至少选修一门的概率是0.88.
(1)求该学生选修甲、乙、丙的概率分别是多少?
(2)用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积,求ξ的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com