精英家教网 > 高中数学 > 题目详情

【题目】随着移动互联网的发展,与餐饮美食相关的手机软件层出不穷,现从某市使用两款订餐软件的商家中分别随机抽取100个商家,对它们的平均送达时间进行统计,得到频率分布直方图如下:

1)使用订餐软件的商家中平均送达时间不超过30分钟的商家有多少个?

2)试估计该市使用款订餐软件的商家的平均送达时间的众数及中位数;

3)如果以平均送达时间的平均数作为决策依据,从两款订餐软件中选择一款订餐,你会选择哪款?

【答案】140个(2553

【解析】

1)根据频率分布直方图计算出概率即可求出频数.

2)利用频率分布直方图能求出使用款订餐软件的商家中“平均送达时间”的众数,中位数.

3)使用款订餐软件的商家中“平均送达时间”的平均数为35,小于款订餐软件的商家中“平均送达时间”的平均数40,以“平均送达时间”的平均数作为决策依据,从两款订餐软件中选择款订餐.

:1)使用款订餐软件的商家中平均送达时间不超过30分钟的商家共有.

2)依题意可得,使用款订餐软件的商家中平均送达时间的众数为55

由频率分布直方图可判断中位数位于

设中位数为,则,解得.

3)使用款订餐软件的商家中平均送达时间的平均数为

使用款订餐软件的商家中平均送达时间的平均数为

所以选款订餐软件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知 是椭圆的左右焦点, 为椭圆的上顶点,点在椭圆上,直线轴的交点为 为坐标原点,且

(1)求椭圆的方程;

(2)过点作两条互相垂直的直线分别与椭圆交于 两点(异于点),证明:直线过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,若Sm-1=-4,Sm=0,Sm+2=14(m≥2,且m∈N*).

(1)求m的值;

(2)若数列{bn}满足=log2bn(n∈N*),求数列{(an+6)·bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在直角梯形ABCD中,∠ADC=90°,CDABADCDAB=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体DABC,如图②所示.

(1)证明:平面ABD⊥平面BCD

(2)求二面角DABC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年第24届冬奥会将在北京举行为了推动我国冰雪运动的发展,京西某区兴建了“腾越冰雪运动基地。通过对来“腾越参加冰雪运动的100员运动员随机抽样调查,他们的身份分布如下: 注:将表中频率视为概率

身份

小学生

初中生

高中生

大学生

职工

合计

人数

40

20

10

20

10

100

对10名高中生又进行了详细分类如下表:

年级

高一

高二

高三

合计

人数

4

4

2

10

(1)求来“腾越参加冰雪运动的人员中高中生的概率;

(2)根据统计,春节当天来“腾越”参加冰雪运动的人员中,小学生是340人,估计高中生是多少人?

(3)在上表10名高中生中,从高二,高三6名学生中随机选出2人进行情况调查,至少有一名高三学生的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市(如图)的东偏南方向300千米的海面处,并以20千米/时的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60千米,并以10千米/时的速度不断增大,问几个小时后该城市开始受到台风的侵袭?受到台风的侵袭的时间有多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法正确的是(

A.是函数的零点,则的整数倍

B.函数的图象关于点对称

C.函数的图象与函数的图象相同

D.函数的图象可由的图象先向上平移个单位长度,再向左平移个单位长度得到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某校学生喜欢吃零食是否与性别有关,随机对此校100人进行调查,得到如下的列表:已知在全部100人中随机抽取1人,抽到不喜欢吃零食的学生的概率为

喜欢吃零食

不喜欢吃零食辣

合计

男生

10

女生

20

合计

100

(Ⅰ)请将上面的列表补充完整;

(Ⅱ)是否有99.9%以上的把握认为喜欢吃零食与性别有关?说明理由.

下面的临界值表供参考:,其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|2x-1|-|x+1|.

(1)将f(x)的解析式写成分段函数的形式,并作出其图象;

(2)若ab=1,对ab∈(0,+∞),≥3f(x)恒成立,求x的取值范围.

查看答案和解析>>

同步练习册答案