精英家教网 > 高中数学 > 题目详情
在△ABC中,“A>B”是“cos2A<cos2B”的(  )
分析:根据在三角形中,大角对大边得到a>b,利用正弦定理得到A>B,根据三角形中角的正弦值一定是正数得到sin2A>sin2B,根据不等式的性质与同角的三角函数的关系得到“cos2A<cos2B”,得到结论.
解答:解:∵在△ABC中,A>B
∴根据大角对大边得到a>b
a
sinA
=
b
sinB

∴sinA>sinB
根据两个角的正弦值都是正数得到sin2A>sin2B
∴1-cos2A>1-cos2B
∴cos2A<cos2B
∴“A>B”是“cos2A<cos2B”的充要条件.
故选C
点评:本题考查三角形的正弦定理,同一个三角形中大边对大角,考查同角的三角函数之间的关系,本题解题的关键是对于边角关系的互化,注意初中所学的三角形基本知识的应用,本题是一个基础题.本题考查三角形的一些结论的应用:大边对大角、正弦定理、余弦定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂一模)已知函数f(x)=cos
x
2
-
3
sin
x
2

(I)若x∈[-2π,2π],求函数f(x)的单调减区间;
(Ⅱ)在△ABC中,a,b,c分别为角A,B,C的对边,若f(2A-
2
3
π)=
4
3
,sinB=
5
cosC,a=
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)在△ABC中,a、b、c为角A、B、C所对的三边.已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=
3
,设内角B为x,周长为y,求y=f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,三边a、b、c成等差数列,且B=
π
4
,则(cosA一cosC)2的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中角A、B、C的对边分别为a、b、c设向量
m
=(a,cosB),
n
=(b,cosA)且
m
n
m
n

(Ⅰ)若sinA+sinB=
6
2
,求A;
(Ⅱ)若△ABC的外接圆半径为1,且abx=a+b试确定x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,已知a=2,b=
7
,∠B=
π
3
,则△ABC的面积为(  )

查看答案和解析>>

同步练习册答案