精英家教网 > 高中数学 > 题目详情
6.已知公差不为0的等差数列{an}与等比数列$\{{b_n}\},{a_1}=2,{b_n}={a_{2^n}}$,则{bn}的前5项的和为(  )
A.142B.124C.128D.144

分析 b1=a2=2+d,b2=a4=2+3d,b3=a8=2+7d,利用(2+3d)2=(2+d)(2+7d),d≠0,解得d.即可得出公比q,再利用求和公式即可得出.

解答 解:b1=a2=2+d,b2=a4=2+3d,b3=a8=2+7d,
则(2+3d)2=(2+d)(2+7d),d≠0,解得d=2.
∴b1=4,b2=8,公比q=2.
∴{bn}的前5项的和=$\frac{4×({2}^{5}-1)}{2-1}$=124.
故选:B.

点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)=2g(x)+$\frac{x-4}{{x}^{2}+1}$,若f($\frac{1}{sinθ}$)+f(cos2θ)<f(π)-f($\frac{1}{π}$),则θ的取值范围是(  )
A.(2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$),k∈Z
B.(2kπ-$\frac{π}{6}$,2kπ)∪(2kπ,2kπ+π)∪(2kπ+π,2kπ+$\frac{7}{6}$π),k∈Z
C.(2kπ-$\frac{5π}{6}$,2kπ-$\frac{π}{6}$),k∈Z
D.(2kπ-$\frac{7π}{6}$,2kπ-π)∪(2kπ-π,2kπ)∪(2kπ,2kπ+$\frac{π}{6}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=alnx-bx3,a,b为实数,b≠0,e为自然对数的底数,e=2.71828.
(1)当a<0,b=-1时,设函数f(x)的最小值为g(a),求g(a)的最大值;
(2)若关于x的方程f(x)=0在区间(1,e]上有两个不同的实数解,求$\frac{a}{b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,△PAD为正三角形,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F,平面PCD与平面PAB交于直线l.
(1)求证:l∥EF;
(2)求三棱锥P-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合P={x|x2-2x-8≤0},Q={x|x≥a},(∁RP)∪Q=R,则a的取值范围是(  )
A.(-2,+∞)B.(4,+∞)C.(-∞,-2]D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设曲线y=1nx在x=2处的切线与直线ax+y+1=0垂直,则a的值为(  )
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知等比数列{an}的各项均为正数,且a1+2a2=5,4a32=a2a6
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=2,且bn+1=bn+an,求数列{bn}的通项公式;
(3)设cn=$\frac{a_n}{{{b_n}{b_{n+1}}}}$,求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow{b}$=2,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=eax-x.
(Ⅰ)若曲线y=f(x)在(0,f(0))处的切线l与直线x+2y+3=0垂直,求a的值;
(Ⅱ)当a≠1时,求证:存在实数x0使f(x0)<1.

查看答案和解析>>

同步练习册答案