分析 (1)作EF∥CD交PD于F,则利用线面平行的性质证明AB∥l,再利用平行公理得出AB∥EF即可得出结论;
(2)由面面垂直可证EF⊥平面PAD,则VP-AEF=VE-PAF=$\frac{1}{3}{S}_{△PAF}•EF$.
解答
证明:(1)过F作EF∥CD交PD于F,连接EF,AF,
∵E是PC的中点,∴F是PD的中点,
又CD∥AB,
∴EF∥AB,
∵AB∥CD,CD?平面PAC,AB?平面PCD,
∴AB∥平面PCD,又AB?平面PAB,平面PAB∩平面PCD=l,
∴AB∥l,
∴l∥EF.
解:(2)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AD⊥CD,
∴CD⊥平面PAD,又CD∥EF,
∴EF⊥平面PAD,
∵底面ABCD为矩形,△PAD为正三角形,AD=2,AB=4,
∴EF=$\frac{1}{2}$CD=$\frac{1}{2}$AB=2,S△PAF=$\frac{1}{2}$S△PAD=$\frac{1}{2}×\frac{\sqrt{3}}{4}×4$=$\frac{\sqrt{3}}{2}$,
∴VP-AEF=VE-PAF=$\frac{1}{3}{S}_{△PAF}•EF$=$\frac{1}{3}×\frac{\sqrt{3}}{2}×2$=$\frac{\sqrt{3}}{3}$.
点评 本题考查了线面平行的性质与判断,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 数据 | [12,5,15.5) | [15.5,18.5) | [18.5,21.5) | [21,5,24.5) |
| 频数 | 2 | 1 | 3 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 12 | C. | 8 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 142 | B. | 124 | C. | 128 | D. | 144 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 11 | B. | 3 | C. | 4 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com