精英家教网 > 高中数学 > 题目详情
2.已知a,b,c为正实数,求证:$\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}≥a+b+c$.

分析 不等式两边同时加上a+b+c,分组使用基本不等式即可得出结论.

解答 证明:∵a,b,c为正实数,
∴a+$\frac{{b}^{2}}{a}$≥2b,b+$\frac{{c}^{2}}{b}$≥2c,c+$\frac{{a}^{2}}{c}$≥2a,
将上面三个式子相加得:
a+b+c+$\frac{{b}^{2}}{a}+\frac{{c}^{2}}{b}+\frac{{a}^{2}}{c}$≥2a+2b+2c,
∴$\frac{{b}^{2}}{a}+\frac{{c}^{2}}{b}+\frac{{a}^{2}}{c}$≥a+b+c.

点评 本题考查了不等式的证明,基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=\left\{\begin{array}{l}{2^{1-|x|}},x≤1\\-{(x-2)^2},x>1\end{array}\right.$,若$f(m)=\frac{1}{4}$,则f(1-m)=(  )
A.-1B.-4C.-9D.-16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥S-ABCD中,SD⊥平面ABCD,四边形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1
(1)求二面角S-BC-A的余弦值;
(2)设P是棱BC上一点,E是SA的中点,若PE与平面SAD所成角的正弦值为$\frac{2\sqrt{26}}{13}$,求线段CP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知α是第二象限角,且sinα=$\frac{3}{{\sqrt{10}}},tan({α+β})=-2$,则tanβ=$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=alnx-bx3,a,b为实数,b≠0,e为自然对数的底数,e=2.71828.
(1)当a<0,b=-1时,设函数f(x)的最小值为g(a),求g(a)的最大值;
(2)若关于x的方程f(x)=0在区间(1,e]上有两个不同的实数解,求$\frac{a}{b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\frac{ln|x|}{x}$的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,△PAD为正三角形,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F,平面PCD与平面PAB交于直线l.
(1)求证:l∥EF;
(2)求三棱锥P-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设曲线y=1nx在x=2处的切线与直线ax+y+1=0垂直,则a的值为(  )
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知过点A(0,1)的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1、F2,B为椭圆上的任意一点,且$\sqrt{3}$|BF1|,|F1F2|,$\sqrt{3}$|BF2|成等差数列.
(1)求椭圆C的标准方程;
(2)直线l:y=k(x+2)交椭圆于P,Q两点,若点A始终在以PQ为直径的圆外,求实数k的取值范围.

查看答案和解析>>

同步练习册答案