精英家教网 > 高中数学 > 题目详情
7.函数f(x)=$\frac{ln|x|}{x}$的图象大致为(  )
A.B.
C.D.

分析 判断f(x)的奇偶性,及f(x)的函数值的符号即可得出答案.

解答 解:∵f(-x)=$\frac{ln|-x|}{-x}$=-$\frac{ln|x|}{x}$=-f(x),
∴f(x)是奇函数,
故f(x)的图象关于原点对称,
当x>0时,f(x)=$\frac{lnx}{x}$,
∴当0<x<1时,f(x)<0,当x>1时,f(x)>0,
故选A.

点评 本题考查了函数的图象判断,一般从奇偶性、单调性、零点和函数值等方面判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设向量$\overrightarrow{AB}=(x,x+1),\overrightarrow{CD}=(1,-2)$,且$\overrightarrow{AB}$∥$\overrightarrow{CD}$,则x=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有五人五钱,令上二人所得与下三人等.问各得几何?”其意思为:“现有甲乙丙丁戊五人依次差值等额分五钱,要使甲乙两人所得的钱与丙丁戊三人所得的钱相等,问每人各得多少钱?”根据题意,乙得(  )
A.$\frac{2}{3}$钱B.$\frac{5}{6}$钱C.1钱D.$\frac{7}{6}$钱

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四面体ABCD中,平面ABC⊥平面ACD,E,F,G分别为AB,AD,AC的中点,AC=BC,∠ACD=90°.
(1)求证:AB⊥平面EDC;
(2)若P为FG上任一点,证明:EP∥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a,b,c为正实数,求证:$\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}≥a+b+c$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}的前n项和为Sn,且a3=7,S4=24,数列{bn}的前n项和Tn=n2+an
(1)求数列{an},{bn}的通项公式;
(2)求数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和Bn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平行四边形ABCD中,AB=4,AD=2,∠A=$\frac{π}{3}$,M为DC的中点,N为平面ABCD内一点,若|$\overrightarrow{AB}$-$\overrightarrow{NB}$|=|$\overrightarrow{AM}$-$\overrightarrow{AN}$|,则$\overrightarrow{AM}$•$\overrightarrow{AN}$=(  )
A.16B.12C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示,为了测量A、B处岛屿的距离,小明在D处观测,A、B分别在D处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C处,观测B在C处的正北方向,A在C处的北偏西60°方向,则A、B两处岛屿的距离为20$\sqrt{6}$海里.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x3-x+1,则曲线y=f(x)在点(0,1)处的切线与两坐标轴所围成的三角形的面积为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.2

查看答案和解析>>

同步练习册答案