精英家教网 > 高中数学 > 题目详情
15.如图,在四面体ABCD中,平面ABC⊥平面ACD,E,F,G分别为AB,AD,AC的中点,AC=BC,∠ACD=90°.
(1)求证:AB⊥平面EDC;
(2)若P为FG上任一点,证明:EP∥平面BCD.

分析 (1)推导出CD⊥AC,从而CD⊥平面ABC,进而CD⊥AB,再求出CE⊥AB,CE⊥AB,由此能证明AB⊥平面EDC.
(2)连结EF、EG,推导出EF∥平面BCD,EG∥平面BCD,从而平面EFG∥平面BCD,由此能证明EP∥平面BCD.

解答 证明:(1)∵平面ABC⊥平面ACD,∠ACD=90°,
∴CD⊥AC,
∵平面ABC∩平面ACD=AC,CD?平面ACD,
∴CD⊥平面ABC,
又AB?平面ABC,∴CD⊥AB,
∵AC=BC,E为AB的中点,∴CE⊥AB,
又CE∩CD=C,CD?平面EDC,CE?平面EDC,
∴AB⊥平面EDC.
(2)连结EF、EG,∵E、F分别为AB、AD的中点,
∴EF∥BD,又BD?平面BCD,EF?平面BCD,
∴EF∥平面BCD,
同理可EG∥平面BCD,且EF∩EG=E,EF、EG?平面BCD,
∴平面EFG∥平面BCD,
∵P是FG上任一点,∴EP?平面EFG,
∴EP∥平面BCD.

点评 本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,考查创新意识、应用意识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,短轴长为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若圆O:x2+y2=1的切线l与曲线C相交于A、B两点,线段AB的中点为M,求|OM|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若正实数x,y满足x+y=1,则$\frac{y}{x}+\frac{4}{y}$的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={x|-1<x<3},B={x|x<2},则A∩B={x|-1<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知α是第二象限角,且sinα=$\frac{3}{{\sqrt{10}}},tan({α+β})=-2$,则tanβ=$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直线DE切圆O于点D,直线EO交圆O于A,B两点,DC⊥OB于点C,且DE=2BE,求证:2OC=3BC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\frac{ln|x|}{x}$的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)=\frac{{1+{e^{2x}}}}{{1-{e^{2x}}}}•x$(其中e是自然对数的底数)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l在直角坐标系xOy中的参数方程为$\left\{\begin{array}{l}x=a+tcosθ\\ y=tsinθ\end{array}\right.(t$为参数,θ为倾斜角),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,在极坐标系中,曲线的方程为ρ-ρcos2θ-4cosθ=0.
(1)写出曲线C的直角坐标方程;
(2)点Q(a,0),若直线l与曲线C交于A、B两点,求使$\frac{1}{{{{|{QA}|}^2}}}+\frac{1}{{{{|{QB}|}^2}}}$为定值的值.

查看答案和解析>>

同步练习册答案