精英家教网 > 高中数学 > 题目详情
20.如图,直线DE切圆O于点D,直线EO交圆O于A,B两点,DC⊥OB于点C,且DE=2BE,求证:2OC=3BC.

分析 连接OD,计算OC,BC,即可证明结论.

解答 证明:连接OD,设圆的半径为R,BE=x,则OD=R,DE=2BE=2x,
Rt△ODE中,∵DC⊥OB,∴OD2=OC•OE,∴R2=OC(R+x),①
∵直线DE切圆O于点D,
∴DE2=BE•OE,
∴4x2=x(R+x),②,
∴x=$\frac{2R}{3}$,
代入①,解的OC=$\frac{3R}{5}$,
∴BC=OB-OC=$\frac{2R}{5}$,
∴2OC=3BC.

点评 本题考查圆的切割线定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在数列{an}中,a1=2,an+1=an+2,Sn为{an}的前n项和,则S10=(  )
A.90B.100C.110D.130

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2+cosx(a∈R)记f(x)的导函数为g(x)
(1)证明:当a=$\frac{1}{2}$时,g(x)在R上的单调函数;
(2)若f(x)在x=0处取得极小值,求a的取值范围;
(3)设函数h(x)的定义域为D,区间(m,+∞)⊆D.若h(x)在(m,+∞)上是单调函数,则称h(x)在D上广义单调.试证明函数y=f(x)-xlnx在0,+∞)上广义单调.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知等比数列{an}的前n项和为Sn,公比q=3,S3+S4=$\frac{53}{3}$,则a3=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四面体ABCD中,平面ABC⊥平面ACD,E,F,G分别为AB,AD,AC的中点,AC=BC,∠ACD=90°.
(1)求证:AB⊥平面EDC;
(2)若P为FG上任一点,证明:EP∥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+t\\ y=\sqrt{3}+\sqrt{3}t\end{array}$(t为参数).在以坐标原点O为极点,x轴非负半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2-4ρcosθ-2$\sqrt{3}$ρsinθ+4=0.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C交于A,B两点,求|OA|•|OB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}的前n项和为Sn,且a3=7,S4=24,数列{bn}的前n项和Tn=n2+an
(1)求数列{an},{bn}的通项公式;
(2)求数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和Bn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z满足$z=\frac{1+2i}{{{{(1-i)}^2}}}$,则在复平面内复数$\overline z$对应的点为(  )
A.$(-1,-\frac{1}{2})$B.$(1,-\frac{1}{2})$C.$(-\frac{1}{2},1)$D.$(-\frac{1}{2},-1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.第31届夏季奥林匹克运动会于2016年8月5日至21日在巴西里约热内卢举行,为了选拔某个项目的奥运会参赛队员,共举行5次达标测试,选手如果通过2次达标测试即可参加里约奥运会,不用参加其余的测试,而每个选手最多只能参加5次测试,假设某个选手每次通过测试的概率都是$\frac{1}{3}$,每次测试通过与是相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.
(1)求该选手能够参加本届奥运会的概率;
(2)记该选手参加测试的次数为X,求随机变量X的分布列及数学期望E(X).

查看答案和解析>>

同步练习册答案