精英家教网 > 高中数学 > 题目详情
5.已知直线l在直角坐标系xOy中的参数方程为$\left\{\begin{array}{l}x=a+tcosθ\\ y=tsinθ\end{array}\right.(t$为参数,θ为倾斜角),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,在极坐标系中,曲线的方程为ρ-ρcos2θ-4cosθ=0.
(1)写出曲线C的直角坐标方程;
(2)点Q(a,0),若直线l与曲线C交于A、B两点,求使$\frac{1}{{{{|{QA}|}^2}}}+\frac{1}{{{{|{QB}|}^2}}}$为定值的值.

分析 (1)极坐标方程两边同乘ρ,根据极坐标与直角坐标的对于关系得出直角坐标方程;
(2)把直线l的参数方程代入曲线C的方程,利用根与系数的关系和参数的几何意义化简即可得出结论.

解答 解:(1)∵ρ-ρcos2θ-4cosθ=0,∴ρ22cos2θ-4ρcosθ=0,
∴x2+y2-x2-4x=0,即y2=4x.
(2)把为$\left\{\begin{array}{l}x=a+tcosθ\\ y=tsinθ\end{array}\right.(t$为参数,θ为倾斜角)代入y2=4x得:
sin2θ•t2-4cosθ•t-4a=0,
∴t1+t2=$\frac{4cosθ}{si{n}^{2}θ}$,t1t2=-$\frac{4a}{si{n}^{2}θ}$,
∴$\frac{1}{{{{|{QA}|}^2}}}+\frac{1}{{{{|{QB}|}^2}}}$=$\frac{1}{{{t}_{1}}^{2}}+\frac{1}{{{t}_{2}}^{2}}$=$\frac{{{t}_{1}}^{2}+{{t}_{2}}^{2}}{{{t}_{1}}^{2}{{t}_{2}}^{2}}$=$\frac{({t}_{1}+{t}_{2})^{2}-2{t}_{1}{t}_{2}}{{{t}_{1}}^{2}{{t}_{2}}^{2}}$=$\frac{16co{s}^{2}θ+8asi{n}^{2}θ}{16{a}^{2}}$,
∴当a=2时,$\frac{1}{{{{|{QA}|}^2}}}+\frac{1}{{{{|{QB}|}^2}}}$为定值$\frac{1}{4}$.

点评 本题考查了参数方程的几何意义,极坐标与直角坐标的转化,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,在四面体ABCD中,平面ABC⊥平面ACD,E,F,G分别为AB,AD,AC的中点,AC=BC,∠ACD=90°.
(1)求证:AB⊥平面EDC;
(2)若P为FG上任一点,证明:EP∥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示,为了测量A、B处岛屿的距离,小明在D处观测,A、B分别在D处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C处,观测B在C处的正北方向,A在C处的北偏西60°方向,则A、B两处岛屿的距离为20$\sqrt{6}$海里.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合A={x|x>2},B={x|x2-4x<0},则A∩B=(  )
A.(4,+∞)B.(2,4)C.(0,4)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\frac{1}{2}$sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(x)的单调递增区间为(  )
A.$(-\frac{1}{24}+2kπ,\frac{5}{24}+2kπ)$,(k∈Z)B.$(-\frac{1}{12}+\frac{k}{2},\frac{5}{12}+\frac{k}{2})$,(k∈Z)
C.$(-\frac{1}{12}+2kπ,\frac{1}{3}+2kπ)$,(k∈Z)D.$(-\frac{1}{24}+\frac{k}{2},\frac{5}{24}+\frac{k}{2})$,(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.第31届夏季奥林匹克运动会于2016年8月5日至21日在巴西里约热内卢举行,为了选拔某个项目的奥运会参赛队员,共举行5次达标测试,选手如果通过2次达标测试即可参加里约奥运会,不用参加其余的测试,而每个选手最多只能参加5次测试,假设某个选手每次通过测试的概率都是$\frac{1}{3}$,每次测试通过与是相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.
(1)求该选手能够参加本届奥运会的概率;
(2)记该选手参加测试的次数为X,求随机变量X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x3-x+1,则曲线y=f(x)在点(0,1)处的切线与两坐标轴所围成的三角形的面积为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三棱锥P-ABC,侧棱PA=2,底面三角形ABC为正三角形,边长为2,顶点P在平面ABC上的射影为D,有AD⊥DB,且DB=1.
(Ⅰ)求证:AC∥平面PDB;
(Ⅱ)求二面角P-AB-C的余弦值;
(Ⅲ)线段PC上是否存在点E使得PC⊥平面ABE,如果存在,求$\frac{CE}{CP}$的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={0,1,2,3,4},B={x|(x+5)(x-m)<0},m∈Z,若A∩B有三个元素,则m的值为(  )
A.-2B.2C.-3D.3

查看答案和解析>>

同步练习册答案