精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Acos(
x
4
+
π
6
)
,x∈R,且f(
π
3
)=
2

(1)求A的值;
(2)设α,β∈[0,
π
2
]
f(4α+
4
3
π)=-
30
17
f(4β-
2
3
π)=
8
5
,求cos(α+β)的值.
(1)f(
π
3
)=Acos(
π
12
+
π
6
)=Acos
π
4
=
2
2
A=
2
,解得A=2
(2)f(4α+
4
3
π)=2cos(α+
π
3
+
π
6
)=2cos(α+
π
2
)=-2sinα=-
30
17
,即sinα=
15
17

f(4β-
2
3
π)=2cos(β-
π
6
+
π
6
)=2cosβ=
8
5
,即cosβ=
4
5

因为α,β∈[0,
π
2
]

所以cosα=
1-sin2α
=
8
17
sinβ=
1-cos2α
=
3
5

所以cos(α+β)=cosαcosβ-sinαsinβ=
8
17
×
4
5
-
15
17
×
3
5
=-
13
85
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案