精英家教网 > 高中数学 > 题目详情

【题目】(1)如图(1)所示,椭圆的中心在原点,焦点F1、F2在x轴上,A、B是椭圆的顶点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,求此椭圆的离心率;

(2)如图(2)所示,双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,求此双曲线的离心率.

【答案】(1);(2)

【解析】

1)根据轴得到点坐标,然后表示出的坐标,由转化为坐标关系,得到关系,求出离心率.

2)根据题意得到的斜率和双曲线渐近线的斜率,再由它们互相垂直,得到两者斜率相乘等于,得到的关系,求出离心率.

(1)依题意

,由得:

.

(2)依题意

;渐近线斜率:

直线与该双曲线的一条渐近线垂直

解得

由因为,所求

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市(如图)的东偏南方向300千米的海面处,并以20千米/时的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60千米,并以10千米/时的速度不断增大,问几个小时后该城市开始受到台风的侵袭?受到台风的侵袭的时间有多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数的值域和单调区间:

1

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中为自然对数的底数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)若对任意,不等式恒成立,求实数的取值范围;

(Ⅲ)试探究当时,方程的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|2x-1|-|x+1|.

(1)将f(x)的解析式写成分段函数的形式,并作出其图象;

(2)若ab=1,对ab∈(0,+∞),≥3f(x)恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品价格与该商品日需求量之间的几组对照数据如下表:

(1)y关于x的线性回归方程;

(2)利用(1)中的回归方程当价格x=40/kg日需求量y的预测值为多少?

参考公式:线性回归方程其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某火锅店为了了解气温对营业额的影响随机记录了该店1月份其中5天的日营业额y(单位:万元)与该地当日最低气温x(单位:℃)的数据如下表:

(1)y关于x的线性回归方程x

(2)判断yx之间是正相关还是负相关若该地1月份某天的最低气温为6 用所求回归方程预测该店当日的营业额;

(3)设该地1月份的日最低气温XN(μσ2),其中μ近似为样本平均数σ2近似为样本方差s2P(3.8<X13.4).

附:①回归方程=.

3.2,1.8.XN(μσ2),P(μσXμσ)=0.682 7,P(μ-2σXμ+2σ)=0.954 5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在航天员进行的一项太空实验中,要先后实施6个程序,其中程序只能出现在第一步或最后一步,程序实施时必须相邻,请问实验顺序的编排方法共有 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为边长为2的菱形,,面,点为棱的中点.

(1)在棱上是否存在一点,使得,并说明理由;

(2)当二面角的余弦值为时,求直线与平面所成的角.

查看答案和解析>>

同步练习册答案