精英家教网 > 高中数学 > 题目详情
5.已知等差数列{an}的前n项和为Sn,a1=74,ak=2,S2k-1=194,则ak-40等于(  )
A.66B.64C.62D.68

分析 设等差数列{an}的公差为d,由a1=74,ak=2,S2k-1=194,可得74+(k-1)d=2,S2k-1=194=$\frac{(2k-1)({a}_{1}+{a}_{2k-1})}{2}$=(2k-1)ak,解出即可得出.

解答 解:设等差数列{an}的公差为d,∵a1=74,ak=2,S2k-1=194,
∴74+(k-1)d=2,S2k-1=194=$\frac{(2k-1)({a}_{1}+{a}_{2k-1})}{2}$=(2k-1)ak
解得k=49,d=-$\frac{3}{2}$.
则ak-40=a9=74-$\frac{3}{2}×8$=62.
故选:C.

点评 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如图,已知点G是△ABC的重心,过点G作直线与AB、AC两边分别交于M、N两点,且$\overrightarrow{AM}$=$\frac{a}{3}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{b}{6}$$\overrightarrow{AC}$,则$\frac{2}{a-1}$+$\frac{1}{b-2}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x≤2}\\{x+y-1≥0}\end{array}\right.$,则z=2x-2y-1最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在正方体ABCD-A1B1C1D1中,B1D与C1D1所成角的余弦值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若z=(m2-m-2)+(m2-2m-3)i为纯虚数,则m=(  )
A.-1B.2C.3D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\underset{lim}{△x→0}$$\frac{f{(x}_{0}+△x)-f{(x}_{0}-△x)}{△x}$=(  )
A.$\frac{1}{2}$f′(x0B.f′(x0C.2f′(x0D.-f′(x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某同学在一次研究性学习中发现,以下5个不等关系式子
 ①$\sqrt{3}$-1>$2-\sqrt{2}$
②$2-\sqrt{2}$>$\sqrt{5}-\sqrt{3}$
③$\sqrt{5}-\sqrt{3}$>$\sqrt{6}-2$
④$\sqrt{6}-2$>$\sqrt{7}-\sqrt{5}$
⑤$\sqrt{7}-\sqrt{5}$>$2\sqrt{2}-\sqrt{6}$
(1)上述五个式子有相同的不等关系,分析其结构特点,请你再写出一个类似的不等式
(2)请写出一个更一般的不等式,使以上不等式为它的特殊情况,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设曲线y=ax-ln(2x+1)在点(0,0)处的切线方程为y=2x,则a=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设α∈(0,π),sin α+cos α=$\frac{1}{3}$,则cos 2α的值是(  )
A.$\frac{\sqrt{17}}{9}$B.$\frac{-2\sqrt{2}}{3}$C.-$\frac{\sqrt{17}}{9}$D.$\frac{\sqrt{17}}{9}$或-$\frac{\sqrt{17}}{9}$

查看答案和解析>>

同步练习册答案