精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos2ωx-
3
sinωx•cosωx
(ω>0)的最小正周期是π,
(1)求函数f(x)的单调递增区间和对称中心;
(2)若A为锐角△ABC的内角,求f(A)的取值范围.
(1)由f(x)=cos2ωx-
3
sinωx•cosωx
,得
f(x)=
1+cos2ωx
2
-
3
2
sin2ωx
=cos(2ωx+
π
3
)+
1
2

T=
,得ω=1,所以f(x)=cos(2x+
π
3
)+
1
2

-π+2kπ≤2x+
π
3
≤2kπ,k∈Z
,解得
-
3
+kπ≤x≤-
π
6
+kπ,k∈Z

所以函数f(x)的单调增区间为[-
3
+kπ,-
π
6
+kπ]
,k∈Z.
2x+
π
3
=
π
2
+kπ
,解得x=
π
12
+
2
,k∈Z.
所以对称中心为(
π
12
+
2
1
2
),k∈Z

(2)因为A为锐角三角形的一个内角,所以0<A<
π
2

π
3
<2A+
π
3
3

-1≤cos(2A+
π
3
)<
1
2

-
1
2
≤cos(2A+
π
3
)+
1
2
<1

所以f(A)的取值范围为 [-
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1

(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C、的对边分别为a、b、c,且c=
3
,f(C)=0,若向量
m
=(1, sinA)
与向量
n
=(2,sinB)
共线,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知函数f(x)=
1,x>0
0,x=0
-1,x<0
,设F(x)=x2•f(x),则F(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x-1,x≤0
ln(x+1),x>0
,若|f(x)|≥ax,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(c-1)2x,(x≥1)
(4-c)x+3,(x<1)
的单调递增区间为(-∞,+∞),则实数c的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-ax+5,x<1
1+
1
x
,x≥1
在定义域R上单调,则实数a的取值范围为(  )

查看答案和解析>>

同步练习册答案