分析 (1)过点D1作D1O⊥AE,交AE于点O,连结BO,由已知得D1O⊥平面ABCE,AD1=$\sqrt{2}$,D1E=1,AE=BE=$\sqrt{3}$,D1O=$\frac{\sqrt{2}×1}{\sqrt{3}}$=$\frac{\sqrt{6}}{3}$,AO=$\sqrt{2-\frac{2}{3}}$=$\frac{2\sqrt{3}}{3}$,EO=$\sqrt{1-\frac{2}{3}}$=$\frac{\sqrt{3}}{3}$,求出BO,从而得到AO⊥BO,进而得到AE⊥平面BOD1,由此能证明AE⊥BD1.
(2)点C到平面ABD1的距离等于点E到平面ABD1的距离,利用等体积求点C到平面ABD1的距离.
解答
(1)证明:过点D1作D1O⊥AE,交AE于点O,连结BO,
∵点E为矩形ABCD边CD的中点,AB=2,AD=$\sqrt{2}$,
将△ADE沿AE折起到△AD1E的位置,使得D1-AE-B为直二面角,
∴D1O⊥平面ABCE,AD1=$\sqrt{2}$,D1E=1,AE=BE=$\sqrt{3}$,
D1O=$\frac{\sqrt{2}×1}{\sqrt{3}}$=$\frac{\sqrt{6}}{3}$,AO=$\sqrt{2-\frac{2}{3}}$=$\frac{2\sqrt{3}}{3}$,
EO=$\sqrt{1-\frac{2}{3}}$=$\frac{\sqrt{3}}{3}$,
cos∠BAO=$\frac{4+3-3}{2×2×\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
BO=$\sqrt{4+\frac{4}{3}-2×2×\frac{2\sqrt{3}}{3}×\frac{\sqrt{3}}{3}}$=$\frac{2\sqrt{6}}{3}$,
∴AO2+BO2=AB2,∴AO⊥BO,
∴∠BOD1是直二面角D1-AE-B的平面角,
∴∠BOD1=90°,
∵BO⊥AE,D1O⊥AE,BO∩OD1=O,
∴AE⊥平面BOD1,∵BD1?平面BOD1,
∴AE⊥BD1.
(2)解:∵CE∥AB,
∴点C到平面ABD1的距离等于点E到平面ABD1的距离,设为h,
则由等体积可得$\frac{1}{3}×\frac{1}{2}×2×\sqrt{2}×\frac{\sqrt{6}}{3}$=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×1$h,
∴h=$\frac{2\sqrt{6}}{3}$,
∴点C到平面ABD1的距离等于$\frac{2\sqrt{6}}{3}$.
点评 本题考查异面直线垂直的证明,考查点C到平面ABD1的距离的求法,解题时要认真审题,注意等体积法的合理运用.
科目:高中数学 来源: 题型:解答题
| P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
| k0 | 2.706 | 3.841 | 6.635 | 7.879 |
| 年龄/正误 | 正确 | 错误 | 合计 |
| 20-30 | |||
| 30-40 | |||
| 合计 |
查看答案和解析>>
科目:高中数学 来源:2016-2017学年安徽六安一中高二上理周末检测三数学试卷(解析版) 题型:选择题
若某人在点
测得金字塔顶端仰角为
,此人往金字塔方向走了80米到达点
,测得金字塔顶端的仰角为
,则金字塔的高度最接近于(忽略人的身高)(参考数据
)( )
A.110米 B.112米
C.220米 D.224米
查看答案和解析>>
科目:高中数学 来源:2016-2017学年安徽六安一中高二上理周末检测三数学试卷(解析版) 题型:选择题
已知数列:2,0,2,0,2,0……前六项不适合下列哪个通项公式( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$-1 | B. | 2$\sqrt{2}$+1 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com