精英家教网 > 高中数学 > 题目详情
(1)已知函数f(x)=x+
2
x
在(0,
2
)上为减函数;[
2
,+∞)上为增函数.请你用单调性的定义证明:f(x)=x+
2
x
在(0,
2
)上为减函数;
(2)判定并证明f(x)=x+
2
x
在定义域内的奇偶性;
(3)当x∈(-∞,0)时,根据对称性写出函数f(x)=x+
2
x
的单调区间(只写出区间即可),并求出f(x)在x∈[-2,-1]的值域.
分析:(1)根据定义,设0<x1<x2
2
,通过作差法证明即f(x1)>f(x2),即证明函数为减函数;
(2)根据定义,验证f(-x)=-f(x)成立,即证明函数是奇函数;
(3)利用奇函数的性质得函数在[-2,-1]上的单调区间,根据单调区间求出函数的最大、最小值,可得值域.
解答:解:(1)设0<x1<x2
2

f(x1)-f(x2)=(x1+
2
x1
)-(x2+
2
x2
)=(x1-x2)+(
2
x1
-
2
x2
)=
(x1-x2)(x1x2-2)
x1x2

∵0<x1<x2
2
,∴x1-x2<0,x1x2<2,∴x1x2-2<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴f(x)在(0,
2
)上是减函数.
(2)函数f(x)的定义域为(-∞,0)∪(0,+∞),
f(-x)=-x+
2
-x
=-(x+
2
x
)=-f(x)
∴f(x)是奇函数.
(3)根据奇函数的图象关于原点对称可知:
函数f(x)在(-∞,-
2
)上递增;在(-
2
,0)上递减,
∴f(x)在[-2,-
2
]上递增;在[-
2
,-1]上递减;,
∴在[-2,-
2
)上,-3≤f(x)≤f(-
2
)=-2
2

在[-
2
,-1]上,-2
2
≥f(x)≥f(-1)=-3;
∴f(x)在x∈[-2,-1]的值域为[-3,-2
2
点评:本题考查了用定义法判断与证明函数的奇偶性、单调性,考查利用函数的单调性、奇偶性求函数的值域或最值,熟练掌握函数的奇偶性与单调性的定义是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知函数f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)图象上的任意两点.
①试求直线PQ的斜率kPQ的取值范围;
②求f(x)图象上任一点切线的斜率k的范围;
(2)由(1)你能得出什么结论?(只须写出结论,不必证明),试运用这个结论解答下面的问题:已知集合MD是满足下列性质函数f(x)的全体:若函数f(x)的定义域为D,对任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
①当D=(0,1)时,f(x)=lnx是否属于MD,若属于MD,给予证明,否则说明理由;
②当D=(0,
3
3
)
,函数f(x)=x3+ax+b时,若f(x)∈MD,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=lg(1+x)+lg(1-x).①求函数f(x)的定义域.②判断函数的奇偶性,并给予证明.
(2)已知函数f(x)=ax+3,(a>0且a≠1),求函数f(x)在[0,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=
x+3(x≤0)
2x(x>0)
,则f(f(-2))为
2
2

(2)不等式f(x)>2的解集是
(-1,0]∪(1,+∞)
(-1,0]∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•浦东新区模拟)(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)若曲线y=x+
p
x
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的取值范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
1
e
]
上单调递减,在区间[
1
e
,1)
上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
(1)已知函数f(x)=
1
2
x2   x≤2
log2(x+a)  x>2
在定义域内是连续函数,数列{an}通项公式为an=
1
an
,则数列{an}的所有项之和为1.
(2)过点P(3,3)与曲线(x-2)2-
(y-1)2
4
=1有唯一公共点的直线有且只有两条.
(3)向量
a
=(x2,x+1)
b
=(1-x,t)
,若函数f(x)=
a
b
在区间[-1,1]上是增函数,则实数t的取值范围是(5,+∞);
(4)我们定义非空集合A的真子集的真子集为A的“孙集”,则集合{2,4,6,8,10}的“孙集”有26个.
其中正确的命题有
(1)(2)(4)
(1)(2)(4)
(填序号)

查看答案和解析>>

同步练习册答案