精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=ex,g(x)=mx+n.
(1)设h(x)=f(x)-g(x).若函数h(x)在x=0处的切线过点(1,0),求m+n的值;
(2)设函数r(x)=$\frac{1}{f(x)}$+$\frac{nx}{g(x)}$,且n=4m(m>0),当x≥0时,比较r(x)与1的大小关系.

分析 (1)求出函数的导数,利用导数的几何意义即可得到结论.
(2)求出r(x)的表达式,求函数的导数,利用导数研究函数的单调性即可.

解答 解:(1)h(x)=f(x)-g(x)=ex-mx-n.
则h(0)=1-n,函数的导数f′(x)=ex-m,
则f′(0)=1-m,则函数在x=0处的切线方程为y-(1-n)=(1-m)x,
∵切线过点(1,0),∴-(1-n)=1-m,即m+n=2.
(2)当x≥0时,r(x)≥1,
证明:∵n=4m(m>0),
∴函数r(x)=$\frac{1}{f(x)}$+$\frac{nx}{g(x)}$=$\frac{1}{{e}^{x}}$+$\frac{nx}{mx+n}$=$\frac{1}{{e}^{x}}$+$\frac{4x}{x+4}$,
则函数的导数r′(x)=-$\frac{1}{{e}^{x}}$+$\frac{16}{(x+4)^{2}}$=$\frac{16{e}^{x}-(x+4)^{2}}{{e}^{x}(x+4)^{2}}$,
设h(x)=16ex-(x+4)2
则h′(x)=16ex-2(x+4)=16ex-2x-8,
[h′(x)]′=16ex-2,
当x≥0时,[h′(x)]′=16ex-2>0,则h′(x)为增函数,即h′(x)>h′(0)=16-8=8>0,
即h(x)为增函数,∴h(x)≥h(0)=16-16=0,
即r′(x)≥0,即函数r(x)在[0,+∞)上单调递增,
故r(x)≥r(0)=$\frac{1}{{e}^{0}}+0=1$,
故当x≥0时,r(x)≥1成立.

点评 本题主要考查导数的几何意义的应用,以及利用导数研究函数单调性,在判断函数的单调性的过程中,多次使用了导数来判断函数的单调性是解决本题的关键,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.(1)求经过两条直线2x-y-3=0和4x-3y-5=0的交点,并且与直线2x+3y+5=0垂直的直线方程.
(2)已知在△ABC中,sin A+cos A=$\frac{1}{5}$.求tan A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设点P是曲线y=2x2上的一个动点,曲线y=2x2在点P处的切线为l,过点P且与直线l垂直的直线与曲线y=2x2的另一交点为Q,则PQ的最小值为$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=$\frac{{-{x^2}+x-4}}{x}$(x>0)的最大值为-3,此时x的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的是(  )
A.若x,y∈R,且$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,则$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$
B.△ABC中,A>B是sinA>sinB的充分必要条件
C.命题“若a=-1,则f(x)=ax2+2x-1只有一个零点”的逆命题为真
D.设命题p:?x>0,x2>2x,则¬p:?x0≤0,x02≤2x0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与y=$\sqrt{3}$x-1平行,且它的一个焦点在抛物线y2=8$\sqrt{2}$x的准线上,则双曲线的方程为$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某正三棱柱(底面是正三角形的直棱柱)的正视图和俯视图如图所示.若它的体积为2$\sqrt{3}$,则它的侧视图面积为(  )
A.2$\sqrt{3}$B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别是a,b,c,且a2=3bc.
(Ⅰ)若sinA=sinC,求cosA;
(Ⅱ)若a=3,求△ABC的周长的最小值..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列命题中,
①若p、q为两个命题,则“p且q为真”是“p或q为真”的必要不充分条件;
②若p为:?x∈R,x 2+2x+2≤0,则¬p为:?x∈R,x 2+2x+2>0;
③若椭圆 $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的两焦点为F 1、F 2,且弦AB过F 1点,则△ABF 2的周长为16.
正确命题的序号是②.

查看答案和解析>>

同步练习册答案