精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga
1-x
1+x
(0<a<1)

(1)求函数f(x)的定义域D,并判断f(x)的奇偶性;
(2)用定义证明函数f(x)在D上是增函数;
(3)如果当x∈(t,a)时,函数f(x)的值域是(-∞,1),求a与t的值.
(1)要使原函数有意义,则
1-x
1+x
>0
,解得-1<x<1,
所以函数f(x)的定义域D=(-1,1).
函数f(x)在定义域内为奇函数.
证明:对任意x∈D,f(-x)=loga
1+x
1-x
=loga(
1-x
1+x
)-1=-loga(
1-x
1+x
)=-f(x)

所以函数f(x)是奇函数.
另证:对任意x∈D,f(-x)+f(x)=loga
1+x
1-x
+loga(
1-x
1+x
)=loga1=0

所以函数f(x)是奇函数.
(2)设x1,x2∈(-1,1),且x1<x2,则f(x1)-f(x2)=loga
1-x1
1+x1
-loga
1-x2
1+x2
=loga(
1-x1
1+x1
1+x2
1-x2
)=loga
1-x1x2+(x2-x1)
1-x1x2-(x2-x1)

∵x1,x2∈(-1,1),且x1<x2
∴1-x1x2+(x2-x1)-[1-x1x2-(x2-x1)]=2(x2-x1)>0.
∴1-x1x2+(x2-x1)>[1-x1x2-(x2-x1)]=(1-x1)(1-x2)>0.
1-x1x2+(x2-x1)
1-x1x2-(x2-x1)
>1

∵0<a<1,
loga
1-x1x2+(x2-x1)
1-x1x2-(x2-x1)
<0

∴f(x1)-f(x2)<0,
∴f(x1)<f(x2).
所以函数f(x)在D上是增函数.
(3)由(2)知,函数f(x)在(-1,1)上是增函数,
又因为x∈(t,a)时,f(x)的值域是(-∞,1),
所以(t,a)⊆(-1,1)且g(x)=
1-x
1+x
在(t,a)的值域是(a,+∞),
g(a)=
1-a
1+a
=a
且t=-1(结合g(x)图象易得t=-1)
1-a
1+a
=a
,得:a2+a=1-a,解得:a=
2
-1
或a=-
2
-1
(舍去).
所以a=
2
-1
,t=-1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案