精英家教网 > 高中数学 > 题目详情
11.设f(x)=|2-x 2|,若0<a<b且f(a)=f(b),则a+b的取值范围是(  )
A.(0,2)B.( $\sqrt{2}$,2)C.(2,4)D.(2,2 $\sqrt{2}$)

分析 根据f(x)=|2-x2|,结合f(a)=f(b),得f(a)=2-a2且f(b)=b2-2,所以a2+b2=4,且0<a<$\sqrt{2}$<b.令a=2cosα,b=2sinα,得a+b=2cosα+2sinα=2$\sqrt{2}$sin(α+$\frac{π}{4}$)
结合正弦函数的图象与性质,可得a+b的取值范围.

解答 解:∵f(x)=|2-x2|,0<a<b且f(a)=f(b),
∴0<a<$\sqrt{2}$<b,且f(a)=2-a2,f(b)=b2-2,
因此,2-a2=b2-2,得a2+b2=4,
令a=2cosα,b=2sinα,
∵0<a<$\sqrt{2}$<b,∴$\frac{π}{4}$<α<$\frac{π}{2}$
则a+b=2cosα+2sinα=2$\sqrt{2}$sin(α+$\frac{π}{4}$)
∵$\frac{π}{2}$<α+$\frac{π}{4}$<$\frac{3π}{4}$,
∴sin(α+$\frac{π}{4}$)∈($\frac{\sqrt{2}}{2}$,1),得2$\sqrt{2}$sin(α+$\frac{π}{4}$)∈(2,2$\sqrt{2}$)
即a+b的取值范围是(2,2$\sqrt{2}$)
故选D

点评 本题以含有绝对值的二次函数为载体,考查了函数图象的对称性、三角换元法求函数值域和不等式恒成立等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=\frac{\sqrt{2}}{2}+\sqrt{3}t}\end{array}\right.$  (t为参数),若以直角坐标系xOy的O点为极点,Ox方向为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ-$\frac{π}{4}$).
(1)求直线l的倾斜角和曲线C的直角坐标方程;
(2)若直线l与曲线C交于A,B两点,设点P(0,$\frac{\sqrt{2}}{2}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)=Asin(ωx+φ),(A>0,ω>0,φ∈(0,π)),其导函数f'(x)的部分图象如图所示,则下列对f(x)的说法正确的是(  )
A.最大值为4且关于直线$x=-\frac{π}{2}$对称
B.最大值为4且在$[{-\frac{π}{2}\;\;,\;\;\frac{π}{2}}]$上单调递增
C.最大值为2且关于点$({-\frac{π}{2}\;\;,\;\;0})$中心对称
D.最大值为2且在$[{-\frac{π}{2}\;\;,\;\;\frac{3π}{2}}]$上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,首项a1=-20,公差d=3,则|a1|+|a2|+|a3|+…+|a11|=(  )
A.99B.100C.-55D.98

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某海轮以30n mile/h的速度航行,在A点测得海面上油井P在南偏东60°方向,向北航行40min后达到B点,测得油井P在南偏东30°方向,海轮改为北偏东60°的航向再行驶80min到达C点,则P,C间的距离为(  )
A.20n mileB.20$\sqrt{7}$n mileC.30n mileD.30$\sqrt{7}$n mile

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知约束条件$\left\{\begin{array}{l}x≥k\\ x+y-4≤0\\ x-y≤0\end{array}\right.$表示面积为1的直角三角形区域,则实数k的值为(  )
A.0B.1C.1或3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,则该几何体的体积为(  )
A.30B.24C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,已知角A,B,C所对的边分别为a,b,c,且tanB=2,tanC=3.
(1)求角A的大小;
(2)若c=3,求b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{{4}^{x}-a}{{2}^{x}}$是奇函数.
(Ⅰ)求实数a的值;
(Ⅱ)用定义证明函数f(x)在R上的单调性;
(Ⅲ)若对任意的x∈R,不等式f(x2-x)+f(2x2-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案