| A. | (0,2) | B. | ( $\sqrt{2}$,2) | C. | (2,4) | D. | (2,2 $\sqrt{2}$) |
分析 根据f(x)=|2-x2|,结合f(a)=f(b),得f(a)=2-a2且f(b)=b2-2,所以a2+b2=4,且0<a<$\sqrt{2}$<b.令a=2cosα,b=2sinα,得a+b=2cosα+2sinα=2$\sqrt{2}$sin(α+$\frac{π}{4}$)
结合正弦函数的图象与性质,可得a+b的取值范围.
解答 解:∵f(x)=|2-x2|,0<a<b且f(a)=f(b),
∴0<a<$\sqrt{2}$<b,且f(a)=2-a2,f(b)=b2-2,
因此,2-a2=b2-2,得a2+b2=4,
令a=2cosα,b=2sinα,
∵0<a<$\sqrt{2}$<b,∴$\frac{π}{4}$<α<$\frac{π}{2}$
则a+b=2cosα+2sinα=2$\sqrt{2}$sin(α+$\frac{π}{4}$)
∵$\frac{π}{2}$<α+$\frac{π}{4}$<$\frac{3π}{4}$,
∴sin(α+$\frac{π}{4}$)∈($\frac{\sqrt{2}}{2}$,1),得2$\sqrt{2}$sin(α+$\frac{π}{4}$)∈(2,2$\sqrt{2}$)
即a+b的取值范围是(2,2$\sqrt{2}$)
故选D
点评 本题以含有绝对值的二次函数为载体,考查了函数图象的对称性、三角换元法求函数值域和不等式恒成立等知识,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最大值为4且关于直线$x=-\frac{π}{2}$对称 | |
| B. | 最大值为4且在$[{-\frac{π}{2}\;\;,\;\;\frac{π}{2}}]$上单调递增 | |
| C. | 最大值为2且关于点$({-\frac{π}{2}\;\;,\;\;0})$中心对称 | |
| D. | 最大值为2且在$[{-\frac{π}{2}\;\;,\;\;\frac{3π}{2}}]$上单调递减 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 99 | B. | 100 | C. | -55 | D. | 98 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20n mile | B. | 20$\sqrt{7}$n mile | C. | 30n mile | D. | 30$\sqrt{7}$n mile |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 1或3 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com