精英家教网 > 高中数学 > 题目详情
6.现从编号为1~31的31台机器中,用系统抽样法抽取3台,测试其性能,则抽出的编号可能为(  )
A.4,9,14B.4,6,12C.2,11,20D.3,13,23

分析 根据系统抽样方法的定义,即可得出正确的结论.

解答 解:根据系统抽样原理,31÷3=10余1,
应先剔除1个数据,再重新编号、分组,组距为10,
所以抽出的编号间隔相等,为10,
由此得出满足条件的一组数据为3,13,23.
故选:D.

点评 本题考查了系统抽样方法的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知P为圆C:(x-2)2+(y-2)2=1上任一点,Q为直线l:x+y+2=0上任一点,O为原点,则$|\overrightarrow{OP}-\overrightarrow{OQ}|$的最小值为$\sqrt{2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=2|x+1|-x的最小值为b.
(Ⅰ)求b;
(Ⅱ)已知a≥b,求证:$\sqrt{2a-b}+\sqrt{{a^2}-b}≥a$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-4,x),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.点P(x,y)在直线x+y-4=0上,则x2+y2的最小值是(  )
A.8B.2$\sqrt{2}$C.$\sqrt{2}$D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\overrightarrow{a}$与$\overrightarrow{b}$均为单位向量,它们的夹角为120°,那么|$\overrightarrow{a}$+3$\overrightarrow{b}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$|{\overrightarrow{OA}}|=1$,$|{\overrightarrow{OB}}|=\sqrt{3}$,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为90°,点C在AB上,且∠AOC=30°.设$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),求$\frac{m}{n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cos(2x-$\frac{2π}{3}$)+2cos2x+k的最小值为-3
(1)求常数k的值;
(2)若f(x0)=-$\frac{7}{5}$,x0∈[0,$\frac{π}{4}$],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=$\frac{1}{x}$B.y=5xC.y=-x2+1D.y=lg|x|

查看答案和解析>>

同步练习册答案