精英家教网 > 高中数学 > 题目详情
1.点P(x,y)在直线x+y-4=0上,则x2+y2的最小值是(  )
A.8B.2$\sqrt{2}$C.$\sqrt{2}$D.16

分析 根据题意,由点P(x,y)在直线x+y-4=0上,分析可得x+y=4,即x=y-4,将其代入x2+y2中,计算可得x2+y2=(y-4)2+y2=2y2-8y+16=2(y-2)2+8,由二次函数的性质分析可得答案.

解答 解:根据题意,点P(x,y)在直线x+y-4=0上,
则有x+y=4,即x=y-4,
则x2+y2=(y-4)2+y2=2y2-8y+16=2(y-2)2+8,
分析可得:当y=2时,x2+y2取得最小值8,
故选:A.

点评 本题考查基本不等式的性质,关键是分析得到x、y的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知圆C:(x-1)2+(y-a)2=16,若直线ax+y-2=0与圆C相交于AB两点,且CA⊥CB,则实数a的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.利用独立性检验来考查两个分类变量X,Y是否有关系,当随机变量k的值(  )
A.越大,“X与Y有关系”成立的可能性越大
B.越大,“X与Y有关系”成立的可能性越小
C.越小,“X与Y有关系”成立的可能性越大
D.与“X与Y有关系”成立的可能性无关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某地区气象台统计,该地区下雨的概率是$\frac{4}{15}$,刮风的概率为$\frac{2}{5}$,既刮风又下雨的概率为$\frac{1}{10}$,设A为下雨,B为刮风,那么P(B|A)等于$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知p:|x-a|<3(a为常数);q:代数式$\sqrt{x+1}+lg(6-x)$有意义.
(1)若a=1,求使“p∧q”为真命题的实数x的取值范围;
(2)若p是q成立的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.现从编号为1~31的31台机器中,用系统抽样法抽取3台,测试其性能,则抽出的编号可能为(  )
A.4,9,14B.4,6,12C.2,11,20D.3,13,23

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC面积为$\frac{15\sqrt{3}}{4}$,且a=3,c=5,则sinB=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点$P(2,\sqrt{2})$,一个焦点F的坐标为(2,0).
(1)求椭圆C的方程;
(2)设直线l:y=kx+1与椭圆C交于A,B两点,O为坐标原点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.由函数y=sin x 的图象经过(  )变换,得到函数 y=sin(2x-$\frac{π}{7}$) 的图象.
A.纵坐标不变,横坐标缩小到原来的$\frac{1}{2}$,再向右平移$\frac{π}{7}$个单位
B.纵坐标不变,向右平移$\frac{π}{7}$个单位,再横坐标缩小到原来的$\frac{1}{2}$
C.纵坐标不变,横坐标扩大到原来的 2 倍,再向左平移$\frac{π}{7}$个单位
D.纵坐标不变,向左平移$\frac{π}{7}$个单位,再横坐标扩大到原来的 2 倍

查看答案和解析>>

同步练习册答案