精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)设 是偶函数,求实数的值;

(2)求函数在区间上的值域

(3)若不等式恒成立,求实数的取值范围.

【答案】(1) (2) (3)

【解析】试题分析:(1)根据偶函数定义得再根据对数运算性质解得实数的值;(2)根据对数运算法则得再求分式函数值域,即得在区间上的值域(3)设,将不等式化为,再分离变量得,最后根据基本不等式可得最值,即得实数的取值范围.

试题解析:(1)因为是偶函数,

所以

恒成立, 所以.

(2)

因为所以所以

,则

所以即函数的值域为.

(3)由

,则,设

,由不等式恒成立,

,即时,此时恒成立;

,即时,由解得

所以

,则由不等式恒成立,

因为,所以 ,只需解得

故实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合.曲线 (t为参数),曲线C2的极坐标方程为ρ=ρcos2θ+8cosθ. (Ⅰ)将曲线C1 , C2分别化为普通方程、直角坐标方程,并说明表示什么曲线;
(Ⅱ)设F(1,0),曲线C1与曲线C2相交于不同的两点A,B,求|AF|+|BF|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:经过定点P0(x0 , y0)的直线都可以用方程y﹣y0=k(x﹣x0)表示,命题q:直线xtan +y﹣7=0的倾斜角是 ,则下列命题是真命题的为( )
A.(p)∧q
B.p∧q
C.p∨(q)
D.(P)∧(q)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是平面四边形的对角线, ,且.现在沿所在的直线把折起来,使平面平面,如图.

(1)求证: 平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2017年“双11”,“双12”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共100个,生产一个汤碗需5分钟,生产一个花瓶需7分钟,生产一个茶杯需4分钟,已知总生产时间不超过10小时.若生产一个汤碗可获利润5元,生产一个花瓶可获利润6元,生产一个茶杯可获利润3元.
(1)使用每天生产的汤碗个数x与花瓶个数y表示每天的利润ω(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 ,圆

(1)求证:直线与圆总相交;

(2)求出相交的弦长的最小值及相应的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+a2(a、b∈R)
(1)若函数f(x)在x=1处有极值为10,求b的值;
(2)若a=﹣4,f(x)在x∈[0,2]上单调递增,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(﹣4,0)的动直线l与抛物线C:x2=2py(p>0)相交于B、C两点.
(1)当l的斜率是时, ,求抛物线C的方程;
(2)设BC的中垂线在y轴上的截距为b,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=1,an≠0,anan+1=4Sn﹣1.
(Ⅰ)求{an}的通项公式;
(Ⅱ)证明: + +…+ <2.

查看答案和解析>>

同步练习册答案