精英家教网 > 高中数学 > 题目详情

已知椭圆+=1(a>b>0)的右顶点为A(1,0),过其焦点且垂直长轴的弦长为1,则椭圆方程为       .

 

+x2=1

【解析】∵椭圆+=1的右顶点为A(1,0),

b=1,焦点坐标为(0,c),过焦点且垂直于长轴的弦长为1,

1=2|x|=2b==,a=2,则椭圆方程为+x2=1.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业六十一第九章第二节练习卷(解析版) 题型:选择题

某连队身高符合国庆阅兵标准的士兵共有45,其中18岁~19岁的士兵有15,20岁~22岁的士兵有20,23岁以上的士兵有10,若该连队有9个参加阅兵的名额,如果按年龄分层选派士兵,那么,该连队年龄在23岁以上的士兵参加阅兵的人数为(  )

(A)5 (B)4 (C)3 (D)2

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十四第八章第五节练习卷(解析版) 题型:填空题

在平面直角坐标系xOy,已知椭圆C1:+=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)C1,

(1)求椭圆C1的方程.

(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十六第八章第七节练习卷(解析版) 题型:选择题

若双曲线-=1(a>b>0)的左、右焦点分别为F1,F2,线段F1F2被抛物线x=y2的焦点分成32的两段,则此双曲线的离心率为(  )

(A) (B)

(C) (D)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十八第八章第九节练习卷(解析版) 题型:解答题

已知中心在原点的椭圆C的一个焦点为F(4,0),长轴端点到较近焦点的距离为1,A(x1,y1),B(x2,y2)(x1x2)为椭圆上不同的两点.

(1)求椭圆C的方程.

(2)x1+x2=8,x轴上是否存在一点D,使||=||?若存在,求出D点的坐标;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十八第八章第九节练习卷(解析版) 题型:选择题

已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A,B,|AB|等于(  )

(A)3 (B)4 (C)3 (D)4

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十五第八章第六节练习卷(解析版) 题型:填空题

过双曲线-=1(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线相交于M,N两点,O为双曲线的中心,·=0,则双曲线的离心率为    .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十二第八章第三节练习卷(解析版) 题型:选择题

a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,为半径的圆的方程为(  )

(A)x2+y2-2x+4y=0 (B)x2+y2+2x+4y=0

(C)x2+y2+2x-4y=0 (D)x2+y2-2x-4y=0

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十七第八章第八节练习卷(解析版) 题型:填空题

坐标平面上有两个定点A,B和动点P,如果直线PA,PB的斜率之积为定值m,则点P的轨迹可能是:①椭圆;②双曲线;③抛物线;④圆;⑤直线.试将正确的序号填在横线上:         .

 

查看答案和解析>>

同步练习册答案