精英家教网 > 高中数学 > 题目详情
已知方程2x2+3x-m=0,问:m为何值时,
(1)方程有一个根为0;
(2)方程的两个实根互为倒数.
考点:一元二次方程的根的分布与系数的关系
专题:函数的性质及应用
分析:(1)由0是方程2x2+3x-m=0的一个根,可得0+0-m=0,由此求得m的值.
(2)由题意可得,两根之积等于1,由韦达定理可得-
m
2
=1,由此求得m的值.
解答: 解:(1)对于方程方程2x2+3x-m=0,若有一个根为0,则有0+0-m=0,
解得m=0,即当m=0时,方程有一个根为0.
(2)若方程2x2+3x-m=0 的两个实根互为倒数,则两根之积等于1,
由韦达定理可得-
m
2
=1,求得m=-2.
点评:本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若(
x2
2
-
1
3x
n展开式各项系数和为-
1
128
,则展开式中常数项是第(  )项.
A、4B、5C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

若三角形内切圆半径为r,三边长分别为a,b,c,则三角形的面积为S=
1
2
r(a+b+c),根据类比思想,若四面体内切球半径为R,四个面的面积分别为S1,S2,S3,S4,则这个四面体的体积为(  )
A、V=
1
6
R(S1+S2+S3+S4
B、V=
1
4
R(S1+S2+S3+S4
C、V=
1
3
R(S1+S2+S3+S4
D、V=
1
2
R(S1+S2+S3+S4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点
(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)证明:AD⊥平面PAC;
(Ⅲ)求多面体PMABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC,△CDE都为等边三角形,连接AE,BE,取BE的中点为O,连接AO,并延长AO到F,使BF=AE,求证△BDF为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R,
(Ⅰ)若a≤-
1
2
,讨论f(x)的单调性;
(Ⅱ)若a=-1,对任意的x∈(-∞,0),都有f(x)>
1
3
x3+
1
2
x2+m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1、k2的两条直线分别交抛物线C于A(x1,y1)、B(x2,y2)两点(P、A、B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠-1).
(1)求抛物线C的焦点坐标和准线方程;
(2)当λ=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标y1的取值范围;
(3)设直线AB上一点M,满足
BM
MA
,证明线段PM的中点在y轴上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C过点A(1,
3
2
),两焦点为F1(-
3
,0)、F2
3
,0),O是坐标原点,不经过原点的直线l:y=kx+m与椭圆交于两不同点P、Q.
(1)求椭圆C的方程;     
(2)当k=1时,求△OPQ面积的最大值;
(3)若直线OP、PQ、OQ的斜率依次成等比数列,求直线l的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,1)、B(2,3),曲线C:y=x2+mx+2.
(1)若曲线C和线段AB交于两个不同的点,求m的取值范围;
(2)当m为何值时,可使C在线段AB上截取的弦最长?并求这个最大弦长.

查看答案和解析>>

同步练习册答案