精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R,
(Ⅰ)若a≤-
1
2
,讨论f(x)的单调性;
(Ⅱ)若a=-1,对任意的x∈(-∞,0),都有f(x)>
1
3
x3+
1
2
x2+m,求实数m的取值范围.
考点:导数在最大值、最小值问题中的应用,利用导数研究函数的单调性
专题:导数的综合应用
分析:(I)求导数,分a=-
1
2
,a<-
1
2
,两种情况讨论.
(Ⅱ)利用导数判断并分别求出f(x)的最小值和g(x)的最大值,得-
3
e
1
6
+m
,问题得以解决.
解答: 解:(Ⅰ)f′(x)=(2ax-2)•ex+(x2-2x+1)•ex=(ax2+2ax+x)ex=[x(ax+2a+1)]ex
令f′(x)=0,得x=0,或x=-
2a+1
a
=-2-
1
a

①若a=-
1
2
,f′(x)=-
1
2
x2ex≤0,函数f(x)在R上单调递减,
②若a<-
1
2
,当x∈(-∞,-2-
1
a
)和(0,+∞)时,f′(x)<0,函数f(x)单调递减,
当x∈(-2-
1
a
,0)时,f′(x)>0,函数f(x)单调递增;
综上所述,当a=-
1
2
,函数f(x)在R上单调递减,
当a<-
1
2
,函数f(x)在x∈(-∞,-2-
1
a
)和(0,+∞)时,函数f(x)单调递减,在(-2-
1
a
,0)时,函数f(x)单调递增;
(Ⅱ)当a=-1时,
∴f′(x)=-x(x+1)ex
∴函数f(x)在(-1,0)上单调递增,在(-∞,-1)上单调递减,
∴f(x)在x=-1处取得最小值,最小值为f(-1)=-
3
e

设g(x)=
1
3
x3+
1
2
x2+m,
则g′(x)=x2+x,
当x<-1时,g′(x)>0,当-1<x<0时,g′(x)<0,
∴g(x)在(-∞,-1)上单调递增,在(-1,0)上单调递增,
故g(x)在x=-1时取得最大值,最大值为g(-1)=
1
6
+m,
由题意可知-
3
e
1
6
+m

∴m<-
1
6
-
3
e

故实数m的取值范围为(-∞,-
1
6
-
3
e
点评:本题考查函数与导数的综合应用,关键是判断单调性和最值,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在(-∞,+∞)上的偶函数,f(x)=(a-1)x3+2x2+(b-2)x+c(a、b、c为常数),则函数g(x)=sinbx+a的最小正周期及最小值分别为(  )
A、π,0B、2π,-1
C、π,1D、2π,0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=k
x-1
x+1

(1)求函数F(x)=f(x)-g(x)的单调区间;
(2)当x>1时,函数f(x)>g(x)恒成立,求实数k的取值范围;
(3)求证:ln(1+
1
12
)+ln(1+
1
22
)+…+ln(1+
1
n2
)>
n
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x.
(1)若函数g(x)=f(x)-ax2-1的导函数g′(x)在[0,+∞)上是增函数,求实数a的最大值;
(2)证明在(1)的条件下,当a取最大值时,有f(x)≥
1
2
x2+1(x∈[0,+∞))
(3)证明:f(
1
2
)+f(
1
3
)+…+f(
1
n+1
)>n[1+
1
4(n+2)
](n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程2x2+3x-m=0,问:m为何值时,
(1)方程有一个根为0;
(2)方程的两个实根互为倒数.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0),其短轴的一个端点到点F的距离为
3

(Ⅰ)求椭圆C及其“准圆”的方程
(Ⅱ)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的相异两点,且BD⊥x轴,求
AB
AD
的取值范围;
(Ⅲ)在椭圆C的“准圆”上任取一点P(1,
3
),过点P作两条直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,且l1,l2分别与椭圆的“准圆”交于M,N两点.证明:直线MN过原点O.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈R是周期为4的偶函数,且f(x)=x2+1,x∈(0,2),求f(5),f(7).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,直线bx-ay=ab与两坐标轴围成的三角形面积为4
2

(1)求椭圆C的方程;
(2)设椭圆C的左项点为A,上顶点为B,圆M过A,B两点,当圆心M与原点O的距离最小时,求圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC,角A,B,C的对边分别为a,b,c,且c•sinA=
3
a•cosC
(1)求角C的大小;
(2)若c=3,b=2a,求a,b的值.

查看答案和解析>>

同步练习册答案