¸ø¶¨ÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©£¬³ÆÔ²ÐÄÔÚÔ­µãO¡¢°ë¾¶ÊÇ
a2+b2
µÄԲΪÍÖÔ²CµÄ¡°×¼Ô²¡±£®ÒÑÖªÍÖÔ²CµÄÒ»¸ö½¹µãΪF£¨
2
£¬0£©£¬Æä¶ÌÖáµÄÒ»¸ö¶Ëµãµ½µãFµÄ¾àÀëΪ
3
£®
£¨¢ñ£©ÇóÍÖÔ²C¼°Æä¡°×¼Ô²¡±µÄ·½³Ì
£¨¢ò£©ÈôµãAÊÇÍÖÔ²CµÄ¡°×¼Ô²¡±ÓëxÖáÕý°ëÖáµÄ½»µã£¬B£¬DÊÇÍÖÔ²CÉϵÄÏàÒìÁ½µã£¬ÇÒBD¡ÍxÖᣬÇó
AB
AD
µÄȡֵ·¶Î§£»
£¨¢ó£©ÔÚÍÖÔ²CµÄ¡°×¼Ô²¡±ÉÏÈÎȡһµãP£¨1£¬
3
£©£¬¹ýµãP×÷Á½ÌõÖ±Ïßl1£¬l2£¬Ê¹µÃl1£¬l2ÓëÍÖÔ²C¶¼Ö»ÓÐÒ»¸ö¹«¹²µã£¬ÇÒl1£¬l2·Ö±ðÓëÍÖÔ²µÄ¡°×¼Ô²¡±½»ÓÚM£¬NÁ½µã£®Ö¤Ã÷£ºÖ±ÏßMN¹ýÔ­µãO£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨¢ñ£©ÓÉÌâÒâÖªc=
2
£¬a=
b2+c2
=
3
£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³ÌºÍÆä¡°×¼Ô²¡±£®
£¨¢ò£©ÓÉÌâÒ⣬ÉèB£¨m£¬n£©£¬D£¨m£¬-n£©£¬£¨-
3
£¼m£¼
3
£¬ÔòÓÐ
m2
3
+n2=1
£¬ÓÖAµã×ø±êΪ£¨2£¬0£©£¬¹Ê
AB
=(m-2£¬n)
£¬
AD
=(m-2£¬-n)
£¬ÓÉ´ËÄÜÇó³ö
AB
AD
µÄȡֵ·¶Î§£®
£¨¢ó£©ÓÉÒÑÖªÌõ¼þÖ¤Ã÷l1¡Íl2£¬Óɴ˵õ½MNÊÇ×¼Ô²µÄÖ±¾¶£¬´Ó¶øÄÜÖ¤Ã÷Ö±ÏßMN¹ýÔ­µãO£®
½â´ð£º £¨¢ñ£©½â£ºÓÉÌâÒâÖªc=
2
£¬a=
b2+c2
=
3
£¬½âµÃb=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ
x2
3
+y2=1
£¬Æä¡°×¼Ô²¡±Îªx2+y2=4£®
£¨¢ò£©½â£ºÓÉÌâÒ⣬ÉèB£¨m£¬n£©£¬D£¨m£¬-n£©£¬£¨-
3
£¼m£¼
3
£¬ÔòÓÐ
m2
3
+n2=1
£¬
ÓÖAµã×ø±êΪ£¨2£¬0£©£¬¹Ê
AB
=(m-2£¬n)
£¬
AD
=(m-2£¬-n)
£¬
¡à
AB
AD
=(m-2)2-n2=m2-4m+4-(1-
m2
3
)

=
4
3
m2-4m+3
=
4
3
(m-
3
2
)2
£¬
ÓÖ-
3
£¼m£¼
3
£¬¡à
4
3
(m-
3
2
)2
¡Ê[0£¬7+4
3
£©£®
¡à
AB
AD
µÄȡֵ·¶Î§ÊÇ[0£¬7+4
3
£©£®
£¨¢ó£©ÉèP£¨s£¬t£©£¬Ôòs2+t2=4£¬
µ±s=¡À
3
ʱ£¬t=¡À1£¬Ôòl1£¬l2ÆäÖÐ֮һбÂʲ»´æÔÚ£¬ÁíÒ»ÌõбÂÊΪ0£¬
¡àl1¡Íl2£®
µ±t¡Ù¡À
3
ʱ£¬Éè¹ýP£¨s£¬t£©ÇÒÓëÓÐÒ»¸ö¹«¹²µãµÄÖ±ÏßlµÄбÂÊΪk£¬
ÔòlµÄ·½³ÌΪy-t=k£¨x-s£©£¬´úÈëÍÖÔ²CµÄ·½³Ì£¬µÃ£º
x2+3[k£¨x-s£©+t]2=3£¬¼´£¨3k2+1£©x2-6k£¨t-ks£©x+3£¨t-kt£©2-3=0£¬
ÓÉ¡÷=36k2£¨t-ks£©2-4£¨3k2+1£©[3£¨t-kt£©2-3]=0£¬
µÃ£¨3-t2£©k2+2stk+t2-3=0£¬ÆäÖÐ3-t2¡Ù0£¬
Éèl1£¬l2µÄбÂÊ·Ö±ðΪk1£¬k2£¬Ôòk1£¬k2·Ö±ðÊÇÉÏÊö·½³ÌµÄÁ½¸ö¸ù£¬
¡àk1k2=-1£¬¡àl1¡Íl2£®
×ÛÉÏËùÊö£¬l1¡Íl2£¬
¡àMNÊÇ×¼Ô²µÄÖ±¾¶£¬¡àÖ±ÏßMN¹ýÔ­µãO£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¡¢Ö±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌ⣬ͻ³ö¿¼²éÁËÊýÐνáºÏ¡¢·ÖÀàÌÖÂÛ¡¢º¯ÊýÓë·½³Ì¡¢µÈ¼Ûת»¯µÈÊýѧ˼Ïë·½·¨£¬ÒªÇó¿¼Éú·ÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦¡¢¼ÆËãÄÜÁ¦½Ï¸ß£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
a
¡¢
b
£¬
a
b
=-40£¬|
a
|=10£¬|
b
|=8£¬ÔòÏòÁ¿
a
Óë
b
µÄ¼Ð½ÇΪ£¨¡¡¡¡£©
A¡¢60¡ãB¡¢-60¡ã
C¡¢120¡ãD¡¢-120¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ax2+4x+b£¨a£¼0£¬a£¬b¡ÊR£©£¬Éè¹ØÓÚxµÄ·½³Ìf£¨x£©=0µÄÁ½Êµ¸ùΪx1£¬x2£¬·½³Ì
f£¨x£©=xµÄÁ½Êµ¸ùΪ¦Á£¬¦Â£®
£¨¢ñ£©Èô|¦Á-¦Â|=1£¬ÇóaÓëbµÄ¹ØÏµÊ½£»
£¨¢ò£©Èôa£¬b¾ùΪ¸ºÕûÊý£¬ÇÒ|¦Á-¦Â|=1£¬Çóf£¨x£©µÄ½âÎöʽ£»
£¨¢ó£©Èô¦Á£¼1£¼¦Â£¼2£¬ÇóÖ¤£º£¨x1+1£©£¨x2+1£©£¼7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=£¨x+a£©ex£¬ÆäÖÐeÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£¬a¡ÊR£®
£¨¢ñ£©µ±x¡Ê[0£¬4]ʱ£¬º¯Êýf£¨x£©¡Ýe2ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ò£©µ±a¡Ù0ʱ£¬Çóº¯ÊýF£¨x£©=af£¨x£©µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=£¨ax2+x-1£©ex£¬ÆäÖÐeÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£¬a¡ÊR£¬
£¨¢ñ£©Èôa¡Ü-
1
2
£¬ÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ò£©Èôa=-1£¬¶ÔÈÎÒâµÄx¡Ê£¨-¡Þ£¬0£©£¬¶¼ÓÐf£¨x£©£¾
1
3
x3+
1
2
x2+m£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¡÷ABCÖУ¬AB=BC=AP=1£¬¡ÏABC=120¡ã£¬¡ÏAPC=150¡ã£®
£¨1£©ÇóÈý½ÇÐÎAPBµÄÃæ»ýS£»
£¨2£©Çósin¡ÏBCPµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=£¨x-1£©ex-kx2£¬£¨k¡ÊR£©£®
£¨1£©Èôx=0ÊÇf£¨x£©µÄ¼«´óÖµµã£¬ÇóʵÊýkµÄȡֵ·¶Î§£»
£¨2£©µ±k¡Ê£¨
1
2
£¬1]ʱ£¬Çóº¯Êýf£¨x£©ÔÚ[0£¬k]ÉϵÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼÊÇÒ»¸ö¼¸ºÎÌåµÄÈýÊÓͼ£¬¸©ÊÓͼÊDZ߳¤Îª2cmµÄÕýÈý½ÇÐΣ¬ÕýÊÓͼÖоØÐεij¤±ßΪ5cm£®
£¨1£©ÏëÏóËüµÄ¼¸ºÎ½á¹¹ÌØÕ÷£¬»­³öËüµÄÖ±¹Ûͼ£»
£¨2£©Çó¸Ã¼¸ºÎÌåµÄÌå»ýºÍ±íÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÇóÏÂÁÐÈý½Çº¯ÊýʽµÄÖµ£º
£¨1£©sin
¦Ð
4
cos
19¦Ð
6
tan
21¦Ð
4
£»
£¨2£©
3
sin£¨-1200¡ã£©tan
19¦Ð
6
-cos585¡ãtan£¨-
37¦Ð
4
£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸