精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x+a)ex,其中e是自然对数的底数,a∈R.
(Ⅰ)当x∈[0,4]时,函数f(x)≥e2恒成立,求实数a的取值范围;
(Ⅱ)当a≠0时,求函数F(x)=af(x)的单调区间.
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:(Ⅰ)当x∈[0,4]时,函数f(x)≥e2恒成立,等价为fmin(x)≥e2恒成立求实数a的取值范围;
(Ⅱ)当a≠0时,讨论a的符号和求函数F(x)=af(x)的单调区间.
解答: 解:(Ⅰ)函数的导数的为f′(x)=(x+a+1)ex
当x∈[0,4]时,函数f(x)≥e2恒成立,等价为fmin(x)≥e2恒成立;
令f′(x)=0,解得x=-a-1,
f(x),f′(x)的情况如下:
x(-∞,-a-1)-a-1(-a-1,+∞)
f′(x)-0+
f(x)极小值
①当-a-1≤0,即a≥-1时,f(x)在[0,4]上的最小值为f(0),
若满足题意只需f(0)≥e2,解得a≥e2
②当0<-a-1<4,即-5<a<-1时,f(x)在[0,4]上的最小值为f(-a-1),
若满足题意只需f(-a-1))≥e2,求解可得此不等式无解,
所以a不存在;
③当-a-1≥4,即a≤-5时,f(x)在[0,4]上的最小值为f(4),
若满足题意只需需f(4)≥e2,解得(4+a)e4≥e2
所以此时,a不存在.
综上实数a的取值范围为a≥e2
(Ⅱ)由(Ⅰ)知,f(x)的增区间为(-a-1,+∞),单调减区间为(-∞,-a-1),
∴若a>0,函数F(x)=af(x)的单调性与f(x)的单调性相同,
若a<0,函数F(x)=af(x)的单调性与f(x)的单调性相反,
综上当a>0时,函数F(x)=af(x)的增区间为(-a-1,+∞),单调减区间为(-∞,-a-1),
当a<0时,函数F(x)=af(x)的增区间为(-∞,-a-1),F(x)=af(x)的单调减区间为(-a-1,+∞).
点评:本题主要考查函数单调性和函数最值之间的应用,将不等式恒成立转化为求函数的最值是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a>0,b>0,且2a+b=1,则S=
ab
-4a2-b2的最大值为(  )
A、
2
+2
4
B、
2
2
-1
C、
2
-2
4
D、
2
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,有命题
AB
-
AC
=
BC

AB
+
BC
+
CA
=
0

③若(
AB
+
AC
)•(
AB
+
AC
)=
0
,则△ABC为等腰三角形;
④若
AC
AB
>0,则△ABC为锐角三角形.
上述命题正确的有(  )个.
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
b
的夹角为θ,
a
=(2,1),
a
+3
b
=(5,4),求sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x.
(1)若函数g(x)=f(x)-ax2-1的导函数g′(x)在[0,+∞)上是增函数,求实数a的最大值;
(2)证明在(1)的条件下,当a取最大值时,有f(x)≥
1
2
x2+1(x∈[0,+∞))
(3)证明:f(
1
2
)+f(
1
3
)+…+f(
1
n+1
)>n[1+
1
4(n+2)
](n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=AC,∠BAC=90°,点E,F在BC边上(不与B,C重合),∠EAF=45°,问以BE、EF、FC三条线段为边,是否总能构成直角三角形?请说明结论及理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0),其短轴的一个端点到点F的距离为
3

(Ⅰ)求椭圆C及其“准圆”的方程
(Ⅱ)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的相异两点,且BD⊥x轴,求
AB
AD
的取值范围;
(Ⅲ)在椭圆C的“准圆”上任取一点P(1,
3
),过点P作两条直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,且l1,l2分别与椭圆的“准圆”交于M,N两点.证明:直线MN过原点O.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a(1-|x-1|),a为常数,且a>1.
(1)证明函数f(x)的图象关于直线x=1对称;
(2)当a=2时,讨论方程f(f(x))=m解的个数;
(3)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为函数f(x)的二阶周期点,则f(x)是否有两个二阶周期点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆P与圆F1:(x+3)2+y2=81相切,且与圆F2:(x-3)2+y2=1相内切,记圆心P的轨迹为曲线C;设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点.
(Ⅰ)求曲线C的方程;
(Ⅱ)试探究|MN|和|OQ|2的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由;
(Ⅲ)记△QMN的面积为S,求S的最大值.

查看答案和解析>>

同步练习册答案