精英家教网 > 高中数学 > 题目详情
在△ABC中,AB=AC,∠BAC=90°,点E,F在BC边上(不与B,C重合),∠EAF=45°,问以BE、EF、FC三条线段为边,是否总能构成直角三角形?请说明结论及理由.
考点:三角形中的几何计算
专题:综合题,立体几何
分析:将△AEB逆时针转动直至AB与AC重合,即形成的新△AE'C≌△AEB,AE'=AE,CE'=BE,连接E'F,证明△CE'F为RT△,E'F2=CE'2+FC2,即可得出结论.
解答: 解:将△AEB逆时针转动直至AB与AC重合,即形成的新△AE'C≌△AEB,AE'=AE,CE'=BE.
∠E'AC=∠EAB,∠ABE=∠ACE'=∠ACB=45°.
连接E'F.则∠E'AF=∠E'AC+∠FAC=∠EAB+∠FAC=90°-45°=45°
又∠EAF=45°,所以∠EAF=∠E'AF,
又AE'=AE,AF为公用边,
所以△E'AF≌△EAF,E'F=EF,
又∠ABE=∠ACE'=∠ACB=45°,∠ACE'+∠ACB=45°+45°=90°,
所以△CE'F为RT△,E'F2=CE'2+FC2
又CE'=BE,E'F=EF,EF2=BE2+FC2
所以以BE,EF,FC为边的三角形是直角三角形.
点评:本题考查三角形中的几何计算,考查三角形全等的证明,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于曲线C:
x2
4-k
+
y2
k-1
=1给出下面四个命题:
①曲线C不可能表示椭圆
②当1<k<4时,曲线C表示椭圆
③若曲线C表示双曲线,则k<1或k>4
④若曲线C表示焦点在x 轴上的椭圆,则1<k<
5
2

下列选项正确的是(  )
A、①③B、③④C、②③D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=2an-2n+1,n∈N*.设bn=log2
Sn
n
,tn=
1
bn
+
1
bn+1
+
1
bn+2
+…+
1
b2n-1
,是否存在最大的正整数k,使得对于任意的正整数N,有tn
k
12
恒成立?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx(a≠0)满足1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x+a)ex,其中e是自然对数的底数,a∈R.
(Ⅰ)当x∈[0,4]时,函数f(x)≥e2恒成立,求实数a的取值范围;
(Ⅱ)当a≠0时,求函数F(x)=af(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题A:1≤m≤3,命题B:2<m<4,若A,B中有且只有一个真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AB=BC=AP=1,∠ABC=120°,∠APC=150°.
(1)求三角形APB的面积S;
(2)求sin∠BCP的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
2a
sinA
-
b
sinB
-
c
sinC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将一块边长为a的正方形铁皮,剪去四个角(四个全等的正方形),作成一个无盖的铁盒,要使其容积最大,剪去的小正方形的边长为多少?最大容积是多少?

查看答案和解析>>

同步练习册答案