精英家教网 > 高中数学 > 题目详情
将一块边长为a的正方形铁皮,剪去四个角(四个全等的正方形),作成一个无盖的铁盒,要使其容积最大,剪去的小正方形的边长为多少?最大容积是多少?
考点:基本不等式在最值问题中的应用,棱柱、棱锥、棱台的体积
专题:综合题,空间位置关系与距离
分析:首先由题意建立起无盖铁盒的体积函数,变形成为(a-2x)•(a-2x)•4x,分析得到其“和”是定值,联想到利用基本不等式求最值,即可得出结论.
解答: 解:设剪去的小正方形的边长为x,则无盖铁盒体积V=(a-2x)2•x.
所以:V=(a-2x)2•x=
1
4
(a-2x)•(a-2x)•4x≤
1
4
[
(a-2x)+(a-2x)+4x
3
]3=
2
27
a3
当且仅当a-2x=4x时,即x=
a
6
时取得最大值
2
27
a3
点评:此题主要考查利用基本不等式求最值在实际问题中的应用.前提是“一正二定三相等”,需通过变形技巧,得到“和”或“积”为定值的情形.然后应用不等式即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,AB=AC,∠BAC=90°,点E,F在BC边上(不与B,C重合),∠EAF=45°,问以BE、EF、FC三条线段为边,是否总能构成直角三角形?请说明结论及理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
|x+1|+|x-2|-a

(1)当a=5时,求f(x)的定义域;
(2)若f(x)定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

分解因式:x2+3xy+2y2+4x+5y+3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆P与圆F1:(x+3)2+y2=81相切,且与圆F2:(x-3)2+y2=1相内切,记圆心P的轨迹为曲线C;设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点.
(Ⅰ)求曲线C的方程;
(Ⅱ)试探究|MN|和|OQ|2的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由;
(Ⅲ)记△QMN的面积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DE的中点.
(Ⅰ)求证:BE∥平面ACF;
(Ⅱ)求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在侧棱垂直于底面三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1; 
(2)求证:AC1∥平面CDB1
(3)求三棱锥A1-B1CD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=-3,且2an+1an+an+1+4an+3=0,记bn=
1
an+1

(1)求证:数列{bn+2}为等比数列,并求数列{bn}的通项公式;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

从{1,2,3,4}中随机选一个数a,从{1,2,3}中随机选取一个数b,则b>a的概率是
 

查看答案和解析>>

同步练习册答案