精英家教网 > 高中数学 > 题目详情
设函数f(x)=(x-1)ex-kx2,(k∈R).
(1)若x=0是f(x)的极大值点,求实数k的取值范围;
(2)当k∈(
1
2
,1]时,求函数f(x)在[0,k]上的最小值.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的极值
专题:导数的综合应用
分析:(Ⅰ)先求出函数的导数,再讨论①若k≤0,②若0<k<
1
2
,③若k=
1
2
,④若k>
1
2
时的情况,从而求出k的范围;
(Ⅱ)令g(k)=ln(2k)-k,则g′(k)=
1-k
k
≥0,得g(k)在(
1
2
,1]上递增,从而ln(2k)<k,进而ln(2k)∈[0,k],由(Ⅰ)中④可知当x=ln(2k)时,f(x)取到最小值,求出即可.
解答: 解:(Ⅰ)f′(x)=x(ex-2k),
①若k≤0,令f′(x)=0,解得:x=0,
x>0时,f′(x)>0,x<0时,f′(x)<0,
∴x=0是f(x)的极小值点,不合题意;
②若0<k<
1
2
,令f′(x)=0,解得:x=0或x=ln(2k),ln(2k)<0,
∴f(x)在(-∞,ln(2k)),(0,+∞)递增,在(ln(2k),0)递减,
∴x=0是函数f(x)的极小值点,不合题意;
③若k=
1
2
,f′(x)=x(ex-1),
x>0时,f′(x)>0,x<0时,f′(x)>0,
x=0时,f′(x)=0,
∴f(x)在R上递增,f(x)没有极值点;
④若k>
1
2
,令f′(x)=0,解得:x=0或x=ln(2k),ln(2k)>0,
∴f(x)在(-∞,0),(ln(2k),+∞)递增,在(0,ln(2k))递减,
∴x=0是f(x)的极大值点.
(Ⅱ)令g(k)=ln(2k)-k,则g′(k)=
1-k
k
≥0,
∴g(k)在(
1
2
,1]上递增,
∴g(k)≤ln2-1<0,
∴ln(2k)<k,
∴ln(2k)∈[0,k],
由(Ⅰ)中④可知当x=ln(2k)时,f(x)取到最小值为:
f(ln(2k))=-kln2(2k)+2kln(2k)-2k.
点评:本题考查了函数的单调性,函数的最值问题,考查导数的应用,分类讨论思想,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=-x2+mx+1在(-∞,1)上是增函数,则m的取值范围是(  )
A、{2}
B、(-∞,2]
C、[2,+∞)
D、(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x.
(1)若函数g(x)=f(x)-ax2-1的导函数g′(x)在[0,+∞)上是增函数,求实数a的最大值;
(2)证明在(1)的条件下,当a取最大值时,有f(x)≥
1
2
x2+1(x∈[0,+∞))
(3)证明:f(
1
2
)+f(
1
3
)+…+f(
1
n+1
)>n[1+
1
4(n+2)
](n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0),其短轴的一个端点到点F的距离为
3

(Ⅰ)求椭圆C及其“准圆”的方程
(Ⅱ)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的相异两点,且BD⊥x轴,求
AB
AD
的取值范围;
(Ⅲ)在椭圆C的“准圆”上任取一点P(1,
3
),过点P作两条直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,且l1,l2分别与椭圆的“准圆”交于M,N两点.证明:直线MN过原点O.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈R是周期为4的偶函数,且f(x)=x2+1,x∈(0,2),求f(5),f(7).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a(1-|x-1|),a为常数,且a>1.
(1)证明函数f(x)的图象关于直线x=1对称;
(2)当a=2时,讨论方程f(f(x))=m解的个数;
(3)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为函数f(x)的二阶周期点,则f(x)是否有两个二阶周期点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,直线bx-ay=ab与两坐标轴围成的三角形面积为4
2

(1)求椭圆C的方程;
(2)设椭圆C的左项点为A,上顶点为B,圆M过A,B两点,当圆心M与原点O的距离最小时,求圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解2013年某校高三学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为:(3.9,4.2],(4.2,4.5],…,(5.1,5.4]经过数据处理,得到如图频率分布表:
分组频数频率
(3.9,4.2]30.06
(4.2,4.5]60.12
(4.5,4.8]25x
(4.8,5.1]yz
(5.1,5.4]20.04
合计n1.00
(1)求频率分布表中未知量n,x,y,z的值;
(2)画出图频率分布直方图.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A
 
5
n
=56C
 
7
n
,且(2x+1)n=a0+a1(x+3)+a2(x+3)+a3(x+3)3+…+an(x+3)n,(其中n∈N*
(1)求n的值;
(2)求2a0+22a1+23a3+…+2n+1an的值.

查看答案和解析>>

同步练习册答案