精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,直线bx-ay=ab与两坐标轴围成的三角形面积为4
2

(1)求椭圆C的方程;
(2)设椭圆C的左项点为A,上顶点为B,圆M过A,B两点,当圆心M与原点O的距离最小时,求圆M的方程.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由已知条件推导出
a2-b2
a
=
2
2
1
2
ab=4
2
,由此能求出椭圆C的方程.
(2)由A(-4,0),B(0,2
2
)得线段AB的中点为(_2,
2
),从而线段AB中垂线l的方程为
2
x+y+
2
=0
,当圆心M与原点O的距离最小时,OM⊥l,由此能求出圆M的方程.
解答: 解:(1)直线bx-ay=ab与坐标轴的交点为(a,0),(0,b).…1 分
围成的三角形面积为S=
1
2
ab=4
2
.…2 分
a2-b2
a
=
2
2
1
2
ab=4
2
,解得:a=4,b=2
2
.…(5分)
∴椭圆C的方程为
x2
16
+
y2
8
=1
.…(6分)
(2)由(1)得,A(-4,0),B(0,2
2
).…(7分)
∴线段AB的中点为(_2,
2
),直线AB的斜率为k=
2
2

∴线段AB中垂线l的方程为y-
2
=-
2
(x+2),
2
x+y+
2
=0
.…(9分)
∴圆心M在直线l上,当圆心M与原点O的距离最小时,OM⊥l,
直线OM的方程为y=
2
2
x
.…(11分)
y=
2
2
x
2
x+y+
2
=0
,得x=-
2
3
,y=-
2
3

∴M(-
2
3
,-
2
3
),半径r2=|MA|2=
34
3
.…(12分)
∴圆M的方程为(x+
2
3
)2+(y+
2
3
)2=
34
3
.…(14分)
点评:本题考查曲线与方程、椭圆与圆的方程及简单的几何性质、直线与圆锥曲线的位置关系等基础知识,考查运算求解和分析探究问题能力,考查数形结合思想、化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=|x|(|x-1|-|x+1|)是(  )
A、是奇函数
B、是偶函数
C、是奇函数也是偶函数
D、不是奇函数也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R,
(Ⅰ)若a≤-
1
2
,讨论f(x)的单调性;
(Ⅱ)若a=-1,对任意的x∈(-∞,0),都有f(x)>
1
3
x3+
1
2
x2+m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x-1)ex-kx2,(k∈R).
(1)若x=0是f(x)的极大值点,求实数k的取值范围;
(2)当k∈(
1
2
,1]时,求函数f(x)在[0,k]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C过点A(1,
3
2
),两焦点为F1(-
3
,0)、F2
3
,0),O是坐标原点,不经过原点的直线l:y=kx+m与椭圆交于两不同点P、Q.
(1)求椭圆C的方程;     
(2)当k=1时,求△OPQ面积的最大值;
(3)若直线OP、PQ、OQ的斜率依次成等比数列,求直线l的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个几何体的三视图,俯视图是边长为2cm的正三角形,正视图中矩形的长边为5cm.
(1)想象它的几何结构特征,画出它的直观图;
(2)求该几何体的体积和表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
4
+y2=1的短轴端点分别为A,B(如图).直线AM,BM分别与椭圆E交于C,D两点,其中点满足m≠0,且m≠±
3

(Ⅰ)若AM⊥BM,求m的值;
(Ⅱ)证明:CD所在直线与y轴交点的位置与m无关.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:关于x的不等式2x-3a≤0在区间(-4,1)上恒成立;命题q:函数y=3 x2-ax+1在区间(1,+∞)上是增函数.若命题p或q为真命题,p且q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,向量
OA
=(2acos2
2ω+φ
2
,1),
OB
=(1,
3
asin(ωx+φ)-a),设函数f(x)=
OA
OB
,(a≠0,ω>0,0<φ<
π
2
),若f(x)的图象相邻两最高点的距离为π,且其图象有一条对称轴方程为x=
π
12

(1)求函数f(x)的表达式;
(2)求当a>0时,f(x)的单调增区间;
(3)当x∈[0,
π
2
]时,f(x)+b的最大值为2,最小值为-
3
,求a和b的值.

查看答案和解析>>

同步练习册答案