精英家教网 > 高中数学 > 题目详情
若三角形内切圆半径为r,三边长分别为a,b,c,则三角形的面积为S=
1
2
r(a+b+c),根据类比思想,若四面体内切球半径为R,四个面的面积分别为S1,S2,S3,S4,则这个四面体的体积为(  )
A、V=
1
6
R(S1+S2+S3+S4
B、V=
1
4
R(S1+S2+S3+S4
C、V=
1
3
R(S1+S2+S3+S4
D、V=
1
2
R(S1+S2+S3+S4
考点:类比推理
专题:计算题,推理和证明
分析:根据平面与空间之间的类比推理,由点类比点或直线,由直线 类比 直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.
解答: 解:设四面体的内切球的球心为O,
则球心O到四个面的距离都是R,
所以四面体的体积等于以O为顶点,
分别以四个面为底面的4个三棱锥体积的和.
即V=
1
3
R(S1+S2+S3+S4).
故选:C.
点评:解答的关键是熟悉类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤-1
2x+2,x>-1
,则f(a)>2的实数a的取值范围是(  )
A、(-∞,-2)∪(0,+∞)
B、(-2,-1)
C、(-2,0)
D、(∞,-2)∪(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=sin(2x+
π
3
)的图象向左平移θ个单位,得到偶函数g(x)的图象,则θ的最小正值为(  )
A、
π
12
B、
5
12
π
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如果
a
b
是两个单位向量,那么下列四个结论中正确的是(  )
A、
a
=
b
B、
a
b
=1
C、
a
2
b
2
D、|
a
|2=|
b
|2

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的(  )条件.
A、充分不必要
B、必要不充分
C、充分必要
D、不充分不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=k
x-1
x+1

(1)求函数F(x)=f(x)-g(x)的单调区间;
(2)当x>1时,函数f(x)>g(x)恒成立,求实数k的取值范围;
(3)求证:ln(1+
1
12
)+ln(1+
1
22
)+…+ln(1+
1
n2
)>
n
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2sin(ωx+
3
),2),
b
=(2cosωx,0)(ω>0),函数f(x)=
a
b
的图象与直线y=-2+
3
的相邻两个交点之间的距离为π,
(1)求ω的值;
(2)求函数f(x)在[0,π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程2x2+3x-m=0,问:m为何值时,
(1)方程有一个根为0;
(2)方程的两个实根互为倒数.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了检测某种新研制出的禽流感疫苗对家禽的免疫效果,某研究中心随机抽取了50只鸡作为样本,进行家禽免疫效果试验,得到如下缺少部分数据的2×2列联表.已知用分层抽样的方法,从对禽流感病毒没有免疫力的20只鸡中抽取8只,恰好抽到2只注射了该疫苗的鸡.
(Ⅰ)从抽取到的这8只鸡随机抽取3只进行解剖研究,求至少抽到1只注射了该疫苗的鸡的概率;
(Ⅱ)完成下面2×2列联表,并帮助该研究和纵向判断:在犯错误的概率不超过0.5%的前提下,能否认为这种新研制出的禽流感疫苗对家禽具有免疫效果?
有免疫力没有免疫力  总计
 有注射疫苗  20
 没有注射疫苗
    总计   20   50

查看答案和解析>>

同步练习册答案