精英家教网 > 高中数学 > 题目详情
已知向量
a
=(2sin(ωx+
3
),2),
b
=(2cosωx,0)(ω>0),函数f(x)=
a
b
的图象与直线y=-2+
3
的相邻两个交点之间的距离为π,
(1)求ω的值;
(2)求函数f(x)在[0,π]上的单调递增区间.
考点:平面向量数量积的运算,三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的图像与性质,平面向量及应用
分析:(I)利用数量积运算、倍角公式、两角和差的正弦公式、周期公式即可得出;
(II)利用正弦函数的单调性即可得出.
解答: 解:(Ⅰ)f(x)=4sin(ωx+
3
)cosωx

=4[sinωx•(-
1
2
)+cosωx•
3
2
]cosωx

=2
3
cos2ωx-2sinωxcosωx

=
3
(1+cos2ωx)-sin2ωx

=2cos(2ωx+
π
6
)+
3

由题意,T=π,
=π,ω=1

(Ⅱ)f(x)=2cos(2x+
π
6
)+
3

由x∈[0,π]得  2x+
π
6
∈[
π
6
13π
6
]

2x+
π
6
∈[π,2π]
时,f(x)单调递增,
即f(x)的单调增区间为[
12
11π
12
]
点评:本题考查了数量积运算、倍角公式、两角和差的正弦公式、周期公式、正弦函数的单调性,考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知非零向量
a
b
,下列结论中,不正确的是(  )
A、
0
a
=0
B、
a
2=|
a
|2
C、
a
b
=0?
a
b
D、|
a
b
|=|
a
||
b
|

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①已知函数f(x)=2x+2-x,则y=f(x-2)的图象关于直线x=2对称;
②平面内的动点P到点F(-2,3)和到直线l:2x+y+1=0的距离相等,则点P的轨迹是抛物线;
③若向量
a
b
满足
a
b
<0,则
a
b
的夹角为钝角;
④存在x0∈(1,2),使得(x02-3x0+2)e x0+3x0-4=0成立,
其中正确命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若三角形内切圆半径为r,三边长分别为a,b,c,则三角形的面积为S=
1
2
r(a+b+c),根据类比思想,若四面体内切球半径为R,四个面的面积分别为S1,S2,S3,S4,则这个四面体的体积为(  )
A、V=
1
6
R(S1+S2+S3+S4
B、V=
1
4
R(S1+S2+S3+S4
C、V=
1
3
R(S1+S2+S3+S4
D、V=
1
2
R(S1+S2+S3+S4

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)用反证法证明:在△ABC中,若∠C是直角,则∠B为锐角.
(2)已知某分数分母为a,分子为b(其中a>b>0),若在该分数分子和分母分别加上一正数m得到一个新的分数,试判断原分数和新分数的大小,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点
(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)证明:AD⊥平面PAC;
(Ⅲ)求多面体PMABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC,△CDE都为等边三角形,连接AE,BE,取BE的中点为O,连接AO,并延长AO到F,使BF=AE,求证△BDF为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1、k2的两条直线分别交抛物线C于A(x1,y1)、B(x2,y2)两点(P、A、B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠-1).
(1)求抛物线C的焦点坐标和准线方程;
(2)当λ=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标y1的取值范围;
(3)设直线AB上一点M,满足
BM
MA
,证明线段PM的中点在y轴上.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD∥BC,SA⊥CD,AB⊥平面SAD,M是SC的中点,且SA=AB=BC=2,AD=1.
(1)求证:DM∥平面SAB;
(2)求四棱锥M-ABCD的体积.

查看答案和解析>>

同步练习册答案