| A. | [-$\frac{7π}{12}$,$\frac{5π}{12}$] | B. | [-$\frac{7π}{12}$,-$\frac{π}{12}$] | C. | [-$\frac{π}{12}$,$\frac{7π}{12}$] | D. | [-$\frac{π}{12}$,$\frac{5π}{12}$] |
分析 由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式,再利用正弦函数的单调性,求出f(x)的增区间
解答 解:根据函数f(x)=2sin(ωx+φ)(ω>0,且|φ|<$\frac{π}{2}$)的部分图象,
可得$\frac{1}{4}$•T=$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{2π}{3}$-$\frac{5π}{12}$,求得ω=2,∴函数f(x)=2sin(2x+φ).
再把($\frac{2π}{3}$,0)代入函数的解析式,可得2sin($\frac{4π}{3}$+φ)=-2sin($\frac{π}{3}$+φ)=0,
∴sin($\frac{π}{3}$+φ)=0,∴φ=-$\frac{π}{3}$,故函数f(x)=2sin(2x-$\frac{π}{3}$).
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,
可得函数的增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z,
故选:D.
点评 本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由特殊点的坐标求出φ的值,还考查了正弦函数的单调性,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com