精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=2sin(ωx+φ)(ω>0,且|φ|<$\frac{π}{2}$)的部分图象如图所示,则函数f(x)的一个单调递增区间是(  )
A.[-$\frac{7π}{12}$,$\frac{5π}{12}$]B.[-$\frac{7π}{12}$,-$\frac{π}{12}$]C.[-$\frac{π}{12}$,$\frac{7π}{12}$]D.[-$\frac{π}{12}$,$\frac{5π}{12}$]

分析 由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式,再利用正弦函数的单调性,求出f(x)的增区间

解答 解:根据函数f(x)=2sin(ωx+φ)(ω>0,且|φ|<$\frac{π}{2}$)的部分图象,
可得$\frac{1}{4}$•T=$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{2π}{3}$-$\frac{5π}{12}$,求得ω=2,∴函数f(x)=2sin(2x+φ).
再把($\frac{2π}{3}$,0)代入函数的解析式,可得2sin($\frac{4π}{3}$+φ)=-2sin($\frac{π}{3}$+φ)=0,
∴sin($\frac{π}{3}$+φ)=0,∴φ=-$\frac{π}{3}$,故函数f(x)=2sin(2x-$\frac{π}{3}$).
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,
可得函数的增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z,
故选:D.

点评 本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由特殊点的坐标求出φ的值,还考查了正弦函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知直线l1:y=-$\frac{1}{4}$x-1,l2:y=k2x-2,则“k=2”是“l1⊥l2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|ax2-x+2=0,x∈R}.
(1)若A中有两个元素,求实数a的取值范围;
(2)若A中至多有一个元素,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知角α满足(4k+1)π<α<(4k+1)π+$\frac{π}{6}$(k∈z),那么$\frac{α}{2}$是第二象限角,2α是第一象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的值域(其中(1)和(4)请画出函数的图象)
(1)f(x)=$\frac{1}{x+3}$;
(2)f(x)=$\frac{1}{{x}^{2}+3}$+3;
(3)f(x)=2x2-4x+3(-1<x<4);
(4)f(x)=|x+1|+$\sqrt{(x-2)^{2}}$;
(5)f(x)=2x2-4x+3(-1<x<a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.集合P={x|0≤x<4且x≠2}用区间表示为[0,2)∪(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知实数x,y满足x2+y2=9(y≥0).试求m=$\frac{y+3}{x+1}$及b=2x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定义:一般地,对于给定的两个集合A,B,由两个集合A,B的所有元素组成的集合叫做A与B的交集,记做A∩B(读作A交B)即A∩B={x|x∈A且x∈B}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求极限$\underset{lim}{x→1}$$\frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$.

查看答案和解析>>

同步练习册答案