精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3+bx2+cx+d,其中a,b,c是以d为公差的等差数列,且a>0,d>0.设x0为f(x)的极小值点,在[1-,0]上,f′(x)在x1处取得最大值,在x2处取得最小值,将点(x0,f(x0)),(x1,f′(x1)),(x2,

f′(x2))依次记为A,B,C.

(1)求x0的值;

(2)若△ABC有一边平行于x轴,且面积为2+,求a,d的值.

思路分析:本题考查函数的导数,函数的极值的判定,闭区间上二次函数的最值,等差数列等基础知识的综合应用,还考查应用数形结合的数学思想分析问题,解决问题的能力.

(1)解:∵2b=a+c,

∴f′(x)=ax2+2bx+c=ax2+(a+c)x+c=(x+1)(ax+c).

令f′(x)=0,得x=-1或x=.

∵a>0,d>0,

∴0<a<b<c.

>1,<-1.

<x<-1时,f′(x)<0;

当x>-1时,f′(x)>0.

∴f(x)在x=-1处取得最小值,即x0=-1.

(2)解法一:∵f′(x)=ax2+2bx+c(a>0),

∴f′(x)的图象开口向上,对称轴方程为x=;

>1,1--()=1<0,

∈[1-,0]且|1--()|-||=1>0.

∴f′(x)在[1-,0]上的最大值为f′(0)=c,

即x1=0.

当x=时,f′(x)取得最小值为f′(),即x2=.

f′(x)=ax2+2bx+c=ax2+2(a+d)x+(a+2d),f′()=f′()=.

∵f(x0)=f(-1)=-a,

∴A(-1,-a),B(0,c),C(,).

由△ABC有一条边平行于x轴,知AC平行于x轴,

∴-a=,即a2=3d2.①

又由△ABC的面积为2+,得(-1+)·(c+)=2+.

利用b=a+d,c=a+2d,得d+=2+.②

联立①②可得d=3,a=.

解法二:∵f′(x)=ax2+2bx+c(a>0),

∴f′(1-)=0,f′(0)=c.

又c>0,知f(x)在[1-,0]上的最大值为f′(0)=c,

即x1=0.又由>1,知∈[1-,0],

∴当x=时,f′(x)取得最小值为f′()=,即x2=.

∵f(x0)=f(-1)=-a,

∴A(-1,-a),B(0,c),C(,).

由△ABC有一条边平行于x轴,知AC平行于x轴,

∴-a=,即a2=3d2.①

又由△ABC的面积为2+,

(-1+)·(c+)=2+.

利用b=a+d,c=a+2d,

d+=2+.②

联立①②可得d=3,a=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案