分析 设出曲线上的点的坐标,求出曲线方程,画出图象,即可判断选项的正误.
解答 解:设P(x,y)是曲线C上的任意一点,![]()
因为曲线C是平面内到定点F(0,1)和定直线l:y=-1的距离之和等于4的点的轨迹,
所以|PF|+|y+1|=4.即$\sqrt{{x}^{2}+(y-1)^{2}}$+|y+1|=4,
解得y≥-1时,y=2-$\frac{1}{4}$x2,当y<-1时,y=$\frac{1}{12}$x2-2;
显然①曲线C关于y轴对称;正确.
②若点P(x,y)在曲线C上,则|y|≤2;正确.
③若点P在曲线C上,|PF|+|y+1|=4,|y|≤2,则1≤|PF|≤4.正确.
故答案为:①②③.
点评 本题考查曲线轨迹方程的求法,曲线的基本性质的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
| 分组 | 频数 | 频率 |
| [50,60) | 3 | 0.06 |
| [60,70) | m | 0.10 |
| [70,80) | 13 | n |
| [80,90) | p | q |
| [90,100] | 9 | 0.18 |
| 总计 | t | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ¬p:?x∈R,x<0 | B. | ¬p:?x∈R,x≤0 | C. | ¬p:?x∈R,x<0 | D. | ¬p:?x∈R,x≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{9π}{8}$,$\frac{5π}{4}$) | B. | [$\frac{5π}{4}$,$\frac{11π}{8}$) | C. | [$\frac{3π}{2}$,$\frac{13π}{8}$) | D. | [$\frac{7π}{4}$,$\frac{15π}{8}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{1}{3}$ | C. | 2 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3个 | B. | 2个 | C. | 1个 | D. | 0个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com