精英家教网 > 高中数学 > 题目详情
在三角形ABC中,角A、B、C的对边分别为a、b、c,且三角形的面积为S=
3
2
accosB.
(1)求角B的大小
(2)若
c
a
+
a
c
=4,求
1
tanA
+
1
tanC
的值.
考点:正弦定理,余弦定理
专题:解三角形
分析:(1)在三角形ABC中,由条件可得S=
1
2
acsinB=
3
2
accosB
,求得tanB的值,可得B的值.
(2)由
c
a
+
a
c
=4以及B=
π
3
,可得b2=ac,由正弦定理可得 sin2B=3sinAsinC,求出sinAsinC的值.再利用同角三角函数的基本关系、两角和的正弦公式把要求的式子化为
3
2sinAsinC
,从而求得结果.
解答: 解:(1)在三角形ABC中,∵S=
1
2
acsinB
,由已知S=
3
2
accosB
,可得
1
2
acsinB=
3
2
accosB
,∴tanB=
3

再由0<B<π,∴B=
π
3

(2)∵
c
a
+
a
c
=
a2+c2
ac
=
b2+2accosB
ac
=4
,又∵B=
π
3
b2=3ac
,由正弦定理可得 sin2B=3sinAsinC.
B=
π
3
∴sinAsinC=
1
4
,∴
1
tanA
+
1
tanC
=
cosA
sinA
+
cosC
sinC
=
sinCcosA+cosCsinA
sinAsinC
=
sin(A+C)
sinAsinC
=
sinB
sinAsinC
=
3
2sinAsinC
=2
3
点评:本题主要考查正弦定理和余弦定理的应用,同角三角函数的基本关系、两角和的正弦公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求焦点在坐标轴上,焦距为2
2
,且经过点(-
10
5
3
5
5
)的椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:直线l:ax+y+2a=0,圆C:x2+(y-4)2=4.
(1)当a为何值时,直线l与圆C相切;
(2)若直线l与圆C相交于A、B两点,且|AB|=2
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、若p∧q为假命题,则p,q均为假命题
B、设实数a,b,c满足a+b+c=0,则a,b,c中至少有一个不小于0
C、若
a
b
=
a
c
,则
b
=
c
D、函数y=log2(x2-2x)的单调增区间是[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,抛物线y=-x2+9与x轴交于两点A,B,点C,D在抛物线上(点C在第一象限),CD∥AB.记|CD|=2x,梯形ABCD面积为S.
(1)求面积S以x为自变量的函数式;
(2)若
|CD|
|AB|
=k其中k为常数,且0<k<1,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:ax+by+1=0,圆M:x2+y2-2ax-2by=0,则直线l和圆M在同一坐标系中的图形可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PC⊥平面ABC,△ABC为正三角形,D,E,F分别是BC,PB,CA的中点.
(1)证明:PC∥平面DEF;
(2)证明:平面PBF⊥平面PAC;
(3)若PC=AB=2,求三棱锥P-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

偶函数f(x)在[0,+∞)上为增函数,若不等式f(ax-1)<f(2+x2)恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=1-2cos2x的最小正周期是
 

查看答案和解析>>

同步练习册答案