精英家教网 > 高中数学 > 题目详情
已知首项为的等比数列{an}是递减数列,其前n项和为Sn,且S1+a1,S2+a2,S3+a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)已知,求数列{bn}的前n项和
(I)an=a1=()n;(Ⅱ).

试题分析:(I){an}是一等比数列,且a1=.设等比数列{an}的公比为q,由S1+a1,S2+a2,S3+a3成等差数列,可得一个含公比q的方程,解这个方程便得公比q,从而得数列{an}通项公式. (Ⅱ)由题设及(I)可得:bn=anlog2an=-n?()n,由等差数列与等比数列的积或商构成的新数列,求和时用错位相消法.
试题解析:(I)设等比数列{an}的公比为q,由题知  a1=
又∵ S1+a1,S2+a2,S3+a3成等差数列,
∴ 2(S2+a2)=S1+a1+S3+a3
变形得S2-S1+2a2=a1+S3-S2+a3,即得3a2=a1+2a3
q=+q2,解得q=1或q=,                   4分
又由{an}为递减数列,于是q=
∴an=a1=()n.                            6分
(Ⅱ)由于bn=anlog2an=-n?()n

于是
两式相减得:
.                      12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列,且满足
(1)求证数列是等差数列;
(2)设,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设正数列的前项和为,且
(1)求数列的首项
(2)求数列的通项公式;
(3)设是数列的前项和,求使得对所有都成立的最小正整数

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列为等差数列,且
(1)求数列的通项公式;
(2)证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设等差数列的前项和为,已知.
(1)求
(2)若从中抽取一个公比为的等比数列,其中,且.
①当取最小值时,求的通项公式;
②若关于的不等式有解,试求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列满足是数列的前项和.
(1)若数列为等差数列.
(ⅰ)求数列的通项
(ⅱ)若数列满足,数列满足,试比较数列 前项和项和的大小;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等差数列{an}的前n项和为Sn,满足a13S13=13,则a1=(  ).
A.-14B.-13C.-12D.-11

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在等差数列中,若,则该数列的前15项的和为____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设数列{an}是公差不为零的等差数列,它的前n项和为Sn,且S1  S2、S4成等比数列,则等于(   )
A.3B.4C.6D.7

查看答案和解析>>

同步练习册答案