£¨2012•Í¨ÖÝÇøһģ£©¶ÔÓÚÊýÁÐ{an}£¬´ÓµÚ¶þÏîÆð£¬Ã¿Ò»ÏîÓëËüÇ°Ò»ÏîµÄ²îÒÀ´Î×é³ÉµÈ±ÈÊýÁУ¬³Æ¸ÃµÈ±ÈÊýÁÐΪÊýÁÐ{an}µÄ¡°²îµÈ±ÈÊýÁС±£¬¼ÇΪÊýÁÐ{bn}£®ÉèÊýÁÐ{bn}µÄÊ×Ïîb1=2£¬¹«±ÈΪq£¨qΪ³£Êý£©£®
£¨I£©Èôq=2£¬Ð´³öÒ»¸öÊýÁÐ{an}µÄÇ°4Ï
£¨II£©£¨¢¡£©ÅжÏÊýÁÐ{an}ÊÇ·ñΪµÈ²îÊýÁУ¬²¢ËµÃ÷ÄãµÄÀíÓÉ£»
£¨¢¢£©a1ÓëqÂú×ãʲôÌõ¼þ£¬ÊýÁÐ{an}ÊǵȱÈÊýÁУ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨III£©Èôa1=1£¬1£¼q£¼2£¬ÊýÁÐ{an+cn}Êǹ«²îΪqµÄµÈ²îÊýÁУ¨n¡ÊN*£©£¬ÇÒc1=q£¬ÇóʹµÃcn£¼0³ÉÁ¢µÄnµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨¢ñ£©ÒòΪÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬ÇÒb1=2£¬q=2£¬ËùÒÔb2=4£¬b3=8£¬ÓÉ´ËÄܹ»Çó³öÒ»¸öÊýÁÐ{an}µÄÇ°4Ï
£¨¢ò£©£¨¢¡£©ÒòΪb1=2£¬ËùÒÔan-a1=2(1+q+q2+¡­+qn-2)£®q=1ʱ£¬ÊýÁÐ{an}ÊǵȲîÊýÁУ®Èôq¡Ù1ʱ£¬ÊýÁÐ{an}²»ÊǵȲîÊýÁУ®
£¨¢¢£©ÒòΪÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬Ê×Ïîb1=2£¬¹«±ÈΪq£¬ËùÒÔb2=2q£¬b3=2q2£®ËùÒÔa2=a1+2£¬a3=a1+2+2q£®ÒòΪÊýÁÐ{an}ÊǵȱÈÊýÁУ¬ËùÒÔa22=a1a3£¬ËùÒÔµ±q=
a1+2
a1
ʱ£¬ÊýÁÐ{an}ÊǵȱÈÊýÁУ®
£¨¢ó£©ÒòΪ{an+cn}Êǹ«²îΪqµÄµÈ²îÊýÁУ¬ËùÒÔ£¨an+cn£©-£¨an-1+cn-1£©=q£¬Óɴ˲ÂÏ룺µ±n¡Ý3ʱ£¬cn£¼0£®ÔÙÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®
½â´ð£º½â£º£¨¢ñ£©ÒòΪÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬ÇÒb1=2£¬q=2£¬
ËùÒÔb2=4£¬b3=8£¬
ËùÒÔa1=1£¬a2=3£¬a3=7£¬a4=15£®£¨Ð´³öÂú×ãÌõ¼þµÄÒ»×é¼´¿É£©
¡­£¨2·Ö£©
£¨¢ò£©£¨¢¡£©ÒòΪb1=2£¬
ËùÒÔa2-a1=2£¬a3-a2=2q£¬a4-a3=2q2£¬¡­£¬an-an-1=2qn-2£¬n¡Ý2£®
ËùÒÔan-a1=2(1+q+q2+¡­+qn-2)£®
¢ÙÈôq=1£¬ËùÒÔan-an-1=2£¬
ËùÒÔÊýÁÐ{an}ÊǵȲîÊýÁУ®¡­£¨3·Ö£©
¢ÚÈôq¡Ù1£¬ËùÒÔan=
2(1-qn-1)
1-q
+a1
£¬
ËùÒÔan+1-an=
2(1-qn)
1-q
-
2(1-qn-1)
1-q
=
2qn-1-2qn
1-q
=2qn-1£®
ÒòΪq¡Ù1£¬ËùÒÔ2qn-1²»Êdz£Êý£®
ËùÒÔÊýÁÐ{an}²»ÊǵȲîÊýÁУ®¡­£¨5·Ö£©
£¨¢¢£©ÒòΪÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬Ê×Ïîb1=2£¬¹«±ÈΪq£¬
ËùÒÔb2=2q£¬b3=2q2£®ËùÒÔa2=a1+2£¬a3=a1+2+2q£®
ÒòΪÊýÁÐ{an}ÊǵȱÈÊýÁУ¬
ËùÒÔa22=a1a3£¬
¼´£¨a1+2£©2=a1•£¨a1+2+2q£©£¬
ËùÒÔq=
a1+2
a1
£®
ËùÒÔµ±q=
a1+2
a1
ʱ£¬ÊýÁÐ{an}ÊǵȱÈÊýÁУ®¡­£¨7·Ö£©
£¨¢ó£©ÒòΪ{an+cn}Êǹ«²îΪqµÄµÈ²îÊýÁУ¬
ËùÒÔ£¨an+cn£©-£¨an-1+cn-1£©=q£¬
ÓÖan-an-1=2qn-2£¬
ËùÒÔcn-cn-1=q-2qn-2£¬
ËùÒÔcn-1-cn-2=q-2qn-3£¬¡­£¬c3-c2=q-2q£¬c2-c1=q-2£¬
ËùÒÔcn=nq-2(qn-2+qn-3+¡­+q+1£©
=nq-
2(1-qn-1)
1-q
£®¡­£¨9·Ö£©
ËùÒÔc1=q£¾0£¬c2=2£¨q-1£©£¾0£¬c3=q-2£¼0£¬
c4=-2£¨q2-q+1£©=-2£¨q-
1
2
£©2-
3
2
£¼0£¬¡­
²ÂÏ룺µ±n¡Ý3ʱ£¬cn£¼0£®
ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
¢Ùµ±n=3ʱ£¬c3£¼0ÏÔÈ»³ÉÁ¢£¬
¢Ú¼ÙÉèµ±n=k£¨k¡Ý3£©Ê±£¬ck£¼0£¬
ÄÇôµ±n=k+1ʱ£¬cn+1=cn+q-2qn-1£¼q-2qk-1=q£¨1-2qk-2£©£¬
ÒòΪ1£¼q£¼2£¬k¡Ý3£¬
ËùÒÔ1-2qk-2£¼0£®
ËùÒÔcn+1£¼0£¬
ËùÒÔµ±n=k+1ʱ£¬cn+1£¼0³ÉÁ¢£®
ÓÉ¢Ù¡¢¢ÚËùÊö£¬µ±n¡Ý3ʱ£¬ºãÓÐcn£¼0£®¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éµÈ²îÊýÁк͵ȱÈÊýÁеÄÖ¤Ã÷£¬×ÛºÏÐÔÇ¿£¬ÄѶȴ󣬶ÔÊýѧ˼άµÄÒªÇó½Ï¸ß£¬½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâÊýѧ¹éÄÉ·¨µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Í¨ÖÝÇøһģ£©Ä³Æû³µÏúÊÛ¹«Ë¾ÔÚA£¬BÁ½µØÏúÊÛͬһÖÖÆ·ÅƳµ£¬ÔÚAµØµÄÏúÊÛÀûÈ󣨵¥Î»£ºÍòÔª£©ÊÇy1=4.1x-0.1x2£¬ÔÚBµØµÄÏúÊÛÀûÈ󣨵¥Î»£ºÍòÔª£©ÊÇy2=2x£¬ÆäÖÐxΪÏúÊÛÁ¿£¨µ¥Î»£ºÁ¾£©£®Èô¸Ã¹«Ë¾ÔÚÕâÁ½µØ¹²ÏúÊÛ16Á¾ÕâÖÖÆ·ÅƳµ£¬ÔòÄÜ»ñµÃµÄ×î´óÀûÈóÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Í¨ÖÝÇøһģ£©ÒÑÖªº¯Êýf£¨x£©=lnx-x2£®
£¨I£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨II£©Çóº¯Êýf£¨x£©ÔÚ£¨0£¬a]£¨a£¾0£©ÉϵÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Í¨ÖÝÇøһģ£©ÏÂÁк¯ÊýÖУ¬º¯ÊýͼÏó¹ØÓÚyÖá¶Ô³Æ£¬ÇÒÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔöµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Í¨ÖÝÇøһģ£©¸´Êýz=
1+i
1-i
µÈÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Í¨ÖÝÇøһģ£©Èçͼ£¬³ÌÐò¿òͼËù½øÐеÄÇóºÍÔËËãÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸