精英家教网 > 高中数学 > 题目详情

【题目】如图, 中,分别为边的中点,以为折痕把折起,使点到达点的位置,且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值.

【答案】(1)见解析;(2)

【解析】

1)由分别为边的中点,可得,由已知结合线面垂直的判定可得平面,从而得到平面;(2)取的中点,连接,由已知证明平面,过,分别以所在直线为轴建立空间直角坐标系,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得平面与平面所成锐二面角的余弦值.

(1)因为分别为边的中点,

所以

因为

所以

又因为

所以平面

所以平面

(2)取的中点,连接

由(1)知平面平面

所以平面平面

因为

所以

又因为平面,平面平面

所以平面

,分别以所在直线为轴建立空间直角坐标系,则

设平面的法向量为

易知为平面的一个法向量,

所以平面与平面所成锐二面角的余弦值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列四个图形中,正方体棱上的四个中点共面的图形是( ).

A.甲与乙B.乙与丙C.丙与丁D.丁与甲

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 n N ,设抛物线 y2 2(2n 1) x ,过 P 2n, 0 任作直线 l 与抛物线交与 An Bn两点,则数列的前 n 项和为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行促销活动,有两个摸奖箱,箱内有一个“”号球、两个“”号球、三个“”号球、四个无号球,箱内有五个“”号球、五个“”号球,每次摸奖后放回,消费额满元有一次箱内摸奖机会,消费额满元有一次箱内摸奖机会,摸得有数字的球则中奖,“”号球奖元、“”号球奖元、“”号球奖元,摸得无号球则没有奖金.

(Ⅰ)经统计,消费额服从正态分布,某天有为顾客,请估计消费额(单位:元)在区间内并中奖的人数;

(Ⅱ)某三位顾客各有一次箱内摸奖机会,求其中中奖人数的分布列;

(Ⅲ)某顾客消费额为元,有两种摸奖方法,方法一:三次箱内摸奖机会;方法二:一次箱内摸奖机会,请问:这位顾客选哪一种方法所得奖金的期望值较大.

附:若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三条直线l1:2x-y+a=0(a>0),直线l2:4x-2y-1=0和直线l3:x+y-1=0,且l1l2的距离是.

(1)a的值.

(2)能否找到一点P,使得P点同时满足下列三个条件:①P是第一象限的点;②P点到l1的距离是P点到l2的距离的;③P点到l1的距离与P点到l3的距离之比是?若能,求出P点坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将一块直角三角形板置于平面直角坐标系中,已知,点是三角板内一点,现因三角板中,阴影部分受到损坏,要把损坏部分锯掉,可用经过点的任一直线将三角板锯成,设直线的斜率为.

1)用表示出直线的方程,并求出点的坐标;

2)求出的取值范围及其所对应的倾斜角的范围;

3)求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是双曲线的左右焦点,其渐近线为,且其右焦点与抛物线的焦点重合.

1)求双曲线的方程;

2)过的直线相交于两点,直线的法向量为,且,求的值

3)在(2)的条件下,若双曲线在第四象限的部分存在一点满足,求的值及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个生产公司投资A生产线500万元,每万元可创造利润万元,该公司通过引进先进技术,在生产线A投资减少了x万元,且每万元的利润提高了;若将少用的x万元全部投入B生产线,每万元创造的利润为万元,其中

若技术改进后A生产线的利润不低于原来A生产线的利润,求x的取值范围;

若生产线B的利润始终不高于技术改进后生产线A的利润,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的值域为,记函数.

1)求实数的值;

2)存在使得不等式成立,求实数的取值范围;

3)若关于的方程5个不等的实数根,求实数的取值范围.

查看答案和解析>>

同步练习册答案