【题目】在平面直角坐标系
中,点
的坐标为
,抛物线
的方程为
,过
作动直线
交抛物线于
两点,设线段
的中点为
.
(1)若
与
重合,求直线
的方程;
(2)求直线
的斜率的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,平面中两条直线
和
相交于点O,对于平面上任意一点M,若x,y分别是M到直线
和
的距离,则称有序非负实数对(x,y)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列三个命题:
![]()
①若p=q=0,则“距离坐标”为(0,0)的点有且只有1个;
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且只有2个;
③若pq≠0则“距离坐标”为(p,q)的点有且只有4个.
上述命题中,正确命题的是______.(写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设常数
,已知复数
,
和
,其中
均为实数,
为虚数单位,且对于任意复数
,有
,将
作为点
的坐标,
作为点
的坐标,通过关系式
,可以看作是坐标平面上点的一个变换,它将平面上的点
变到这个平面上的点
.
(1)分别写出
和
用
表示的关系式;
(2)设
,当点
在圆
上移动时,求证:点
经该变换后得到的点
落在一个圆上,并求出该圆的方程;
(3)求证:对于任意的常数
,总存在曲线
,使得当点
在
上移动时,点
经这个变换后得到的点
的轨迹是二次函数
的图像,并写出对于正常数
,满足条件的曲线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点F为椭圆C:
(a>b>0)的左焦点,点A,B分别为椭圆C的右顶点和上顶点,点P(
,
)在椭圆C上,且满足OP∥AB.
![]()
(1)求椭圆C的方程;
(2)若过点F的直线l交椭圆C于D,E两点(点D位于x轴上方),直线AD和AE的斜率分别为
和
,且满足
﹣
=﹣2,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率
,且过焦点的最短弦长为3.
(1)求椭圆
的标准方程;
(2)设
分别是椭圆
的左、右焦点,过点
的直线
与曲线
交于不同的两点
、
,求
的内切圆半径的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com