【题目】对于函数
,若存在实数对
,使得等式
对定义域中的任意
都成立,则称函数
是“
型函数”.
(1)若函数
是“
型函数”,且
,求出满足条件的实数对
;
(2)已知函数
.函数
是“
型函数”,对应的实数对
为
,当
时,
.若对任意
时,都存在
,使得
,试求
的取值范围.
【答案】(1)
; (2)
.
【解析】
(1)利用定义,直接判断求解即可.
(2)由题意得,g(1+x)g(1﹣x)=4,所以当
时,
,其中
, 所以只需使当
时,
恒成立即可,即
在
上恒成立,若
,显然不等式在
上成立,若
,分离参数m,分别求得不等式右边的函数的最值,取交集即可得到m的范围.
(1)由题意,若
是“(a,b)型函数”,则
,即
,
代入
得
,所求实数对为
.
(2)由题意得:
的值域是
值域的子集,易知
在
的值域为
,
只需使当
时,
恒成立即可,
,即
,
而当
时,
, 故由题意可得,要使当
时,都有
,
只需使当
时,
恒成立即可,
即
在
上恒成立,
若
,显然不等式在
上成立,
若
,则可将不等式转化为
,
因此只需上述不等式组在
上恒成立,显然,当
时,不等式(1)成立,
令
在
上单调递增,∴
,
故要使不等式(2)恒成立,只需
即可,综上所述,所求
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数
在某一个周期内的图象时,列表并填入了部分数据,如下表:
|
|
|
|
|
|
|
|
| |||
|
|
|
|
|
(1)请将上表数据补充完整;函数
的解析式为
(直接写出结果即可);
(2)根据表格中的数据作出
一个周期的图象;
(3)求函数
在区间
上的最大值和最小值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是( )![]()
A.各月的平均最低气温都在0℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20℃的月份有5个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax2+bx+c(a≠0),满足条件f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)当x≥0时,f(x)≥mx-3恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,曲线C1的参数方程为
(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+
)=2
.
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是
外,其余每局比赛甲队获胜的概率都是
.假设各局比赛结果相互独立.
(1)分别求甲队以3:0,3:1,3:2获胜的概率;
(2)若比赛结果为3:0或3:1,则胜利方得3分、对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求甲队得分X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(k
R),且满足f(﹣1)=f(1).
(1)求k的值;
(2)若函数y=f(x)的图象与直线
没有交点,求a的取值范围;
(3)若函数
,x
[0,log23],是否存在实数m使得h(x)最小值为0,若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com