精英家教网 > 高中数学 > 题目详情
17.第一象限角的集合是{x|2kπ$<x<\frac{π}{2}+2kπ,k∈Z$}.

分析 直接写出第一象限角的集合得答案.

解答 解:第一象限角的集合为:{x|2kπ$<x<\frac{π}{2}+2kπ,k∈Z$}.
故答案为:{x|2kπ$<x<\frac{π}{2}+2kπ,k∈Z$}.

点评 本题考查象限角和轴线角,考查了集合的表示方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知sin(α+β)sin(α-β)=2m(m≠0),则cos2α-cos2β=(  )
A.-2mB.2mC.-mD.m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,设正棱锥S-ABC的体积为6,E,F和G分别是SA、AB和BC的中点,已知二面角E-FG-A的平面角为60°,求SA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求(3$\sqrt{x}$+$\frac{1}{\sqrt{x}}$)4的展开式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知在△ABC中,角A,B,C的对边分别是a,b,c,且cos(2B+2C)-3cos(B+C)=1.
(1)求角A的大小;
(2)若a=2,△ABC的面积S=$\frac{\sqrt{3}}{2}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.方程(x+y)$\sqrt{{x}^{2}+{y}^{2}-4}$=0表示的曲线是两条射线和一个圆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知奇函数f(x)=ax3+bx2+2x+c,且f(1)=5,则f(2)=(  )
A.-5B.10C.25D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设f(x)=ex-1,当x>-1时,证明:f(x)>$\frac{2{x}^{2}+x-1}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=-x2+3x-a,g(x)=2x-x2,若f[g(x)]≥0对x∈[0,1]恒成立,则实数a的范围是(  )
A.(-∞,2]B.(-∞,e]C.(-∞,ln2]D.[0,$\frac{1}{2}$)

查看答案和解析>>

同步练习册答案