【题目】在四棱锥
中,底面
是正方形,顶点
在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为
,体积为4,且四棱锥的高为整数,则此球的半径等于( )(参考公式:
)
A. 2B.
C. 4D. ![]()
科目:高中数学 来源: 题型:
【题目】候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为v=a+blog3
(其中a,b是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.
(1)求出a,b的值;
(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,焦点为
,准线为
,线段
的中点为
.点
是
上在
轴上方的一点,且点
到
的距离等于它到原点
的距离.
(1)求
点的坐标;
(2)过点
作一条斜率为正数的直线
与抛物线
从左向右依次交于
两点,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系 xOy 中,已知椭圆 C:
的离心率为
,且过点 (
,
),点 P 在第四象限, A 为左顶点, B 为上顶点, PA 交 y 轴于点 C,PB 交 x 轴于点 D.
![]()
(1) 求椭圆 C 的标准方程;
(2) 求 △PCD 面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
经过点
,离心率为
.
(1)求
的方程;
(2)过
的左焦点
且斜率不为
的直线
与
相交于
,
两点,线段
的中点为
,直线
与直线
相交于点
,若
为等腰直角三角形,求
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为自然对数的底数).
(Ⅰ)若函数
的图象在
处的切线为
,当实数
变化时,求证:直线
经过定点;
(Ⅱ)若函数
有两个极值点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
(
)的焦点为
,以抛物线上一动点
为圆心的圆经过点F.若圆
的面积最小值为
.
(Ⅰ)求
的值;
(Ⅱ)当点
的横坐标为1且位于第一象限时,过
作抛物线的两条弦
,且满足
.若直线AB恰好与圆
相切,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,“大衍数列”:
来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前
项和的程序框图.执行该程序框图,输入
,则输出的
( )
![]()
![]()
A. 64 B. 68 C. 100 D. 140
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
经过点
,离心率为
.
(
)求椭圆
的方程.
(
)直线
与椭圆
交于
,
两点,点
是椭圆
的右顶点.直线
与直线
分别与
轴交于点
,
两点,试问在
轴上是否存在一个定点
使得
?若是,求出定点
坐标;若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com