精英家教网 > 高中数学 > 题目详情
如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.

(1)求证:GH∥平面CDE;
(2)若CD=2,DB=4,求四棱锥F—ABCD的体积.
(1)见解析   (2)16
(1)证明 方法一 ∵EF∥AD,AD∥BC,∴EF∥BC.
又EF=AD=BC,∴四边形EFBC是平行四边形,
∴H为FC的中点.
又∵G是FD的中点,∴HG∥CD.
∵HG?平面CDE,CD?平面CDE,
∴GH∥平面CDE.

方法二 连接EA,∵ADEF是正方形,
∴G是AE的中点.
∴在△EAB中,GH∥AB.
又∵AB∥CD,∴GH∥CD.
∵HG?平面CDE,CD?平面CDE,
∴GH∥平面CDE.
(2)解 ∵平面ADEF⊥平面ABCD,交线为AD,
且FA⊥AD,∴FA⊥平面ABCD.
∵AD=BC=6,∴FA=AD=6.
又∵CD=2,DB=4,CD2+DB2=BC2,∴BD⊥CD.
∵S?ABCD=CD·BD=8
∴VF—ABCDS?ABCD·FA=×8×6=16.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,平面平面于点,且, 
(1)求证:
(2)
(3)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正方形的边长为,点分别在边上,,现将△沿线段折起到△位置,使得

(1)求五棱锥的体积;
(2)求平面与平面的夹角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC=BC,点D是AB的中点.

(1)求证:BC1∥平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B;
(3)若底面ABC为边长为2的正三角形,BB1=求三棱锥B1-A1DC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知某个几何体的三视图如下(主视图的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·江苏高考]如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

圆台上、下底面面积分别是π,4π,侧面积是6π,这个圆台的体积是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱锥的各顶点都在一半径为的球面上,球心上,且有,底面,则球与三棱锥的体积之比是     

查看答案和解析>>

同步练习册答案