【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.
非一线城市 | 一线城市 | 总计 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
总计 | 58 | 42 | 100 |
附表:
|
|
|
|
|
|
|
|
|
|
由
算得,
,
参照附表,得到的正确结论是
A. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C. 有99%以上的把握认为“生育意愿与城市级别有关”
D. 有99%以上的把握认为“生育意愿与城市级别无关”
科目:高中数学 来源: 题型:
【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的
人进行问卷调查,得到了如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 |
|
|
|
女 |
|
|
|
合计 |
|
|
|
(1)用分层抽样的方法在患心肺疾病的人群中抽
人,其中男性抽多少人?
(2)在上述抽取的
人中选
人,求恰好有
名女性的概率;
(3)为了研究心肺疾病是否与性别有关,请计算出统计量
,你有多大把握认为心肺疾病与性别有关?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
参考公式:
,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在梯形
中,
,
,
,四边形
是直角梯形,
,
,
,平面
平面
.
![]()
(1)求证:
平面
;
(2)在线段
上是否存在一点
,使得平面
与平面
所成的锐二面角的余弦值为
,若存在,求出点
的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数
,有下列结论:
①
的定义域为(-1, 1); ②
的值域为(
,
);
③
的图象关于原点成中心对称; ④
在其定义域上是减函数;
⑤对
的定义城中任意
都有
.
其中正确的结论序号为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,点
坐标为
.
(1)如图1,斜率存在且过点
的直线
与圆交于
两点.①若
,求直线
的斜率;②若
,求直线
的斜率.
![]()
(2)如图2,
为圆
上两个动点,且满足
,
为
中点,求
的最小值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com