精英家教网 > 高中数学 > 题目详情
将图(1)中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四面体ABCD(如图(2)),则在空间四面体ABCD中,AD与BC的位置关系是(  )
A.相交且垂直B.相交但不垂直
C.异面且垂直D.异面但不垂直
C
在图(1)中的等腰直角三角形ABC中,斜边上的中线AD就是斜边上的高,则AD⊥BC,翻折后如图(2),AD与BC变成异面直线,而原线段BC变成两条线段BD、CD,这两条线段均与AD垂直,即AD⊥BD,AD⊥CD,故AD⊥平面BCD,所以AD⊥BC,选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱的侧棱平面为等边三角形,侧面是正方形,的中点,是棱上的点.

(1)若是棱中点时,求证:平面;
(2)当时,求正方形的边长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四边形ACFE是矩形,且平面平面ABCD,点M在线段EF上.
(1)求证:平面ACFE;
(2)当EM为何值时,AM//平面BDF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在几何体ABCDE中,AB=AD=BC=DC=2,AE=2
2
,AB⊥AD,且AE⊥平面ABD,平面CBD⊥平面ABD.
(Ⅰ)求证:AB平面CDE;
(Ⅱ)求二面角A-EC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m、n表示不同直线,α、β表示不同平面,则下列结论中正确的是(  )
A.若m∥α,m∥n,则n∥α
B.若m?α,n?β,m∥β,n∥α,则α∥β
C.若α∥β,m∥α,m∥n,则n∥β
D.若α∥β,m∥α,n∥m,n?β,则n∥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示为棱长是1的正方体的表面展开图,在原正方体中,给出下列三个结论:

①点M到AB的距离为
②三棱锥C-DNE的体积是
③AB与EF所成的角是.
其中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,则(   )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二面角,A为垂足,,则异面直线所成角的余弦值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图(a),在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为H,如图(b)所示,那么,在四面体A-EFH中必有(  )

A.AH⊥△EFH所在平面
B.AG⊥△EFH所在平面
C.HF⊥△AEF所在平面
D.HG⊥△AEF所在平面

查看答案和解析>>

同步练习册答案