精英家教网 > 高中数学 > 题目详情
16.若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=x2+3x+1.则f(x)=x2+1.

分析 由题意f(-x)=f(x),g(-x)=-g(x),以-x代入f(x)+g(x)=x2+3x+1,可得f(x)-g(x)=x2-3x+1,联立即可得出结论.

解答 解:由题意f(-x)=f(x),g(-x)=-g(x),
∵f(x)+g(x)=x2+3x+1,①
∴f(-x)+g(-x)=x2-3x+1,
∴f(x)-g(x)=x2-3x+1,②
由①②可得f(x)=x2+1.
故答案为x2+1.

点评 本题考查了函数奇偶性的性质在求函数解析式时的应用,要注意体会.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.cos555°的值为(  )
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$C.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$D.$-\frac{{\sqrt{6}+\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若将函数f(x)=2sin(2x+$\frac{π}{3}}$)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$-\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若直线l与抛物线y2=4x交于A,B两点,且线段AB的中点为M(3,2),则直线l的方程为(  )
A.x-y-1=0B.x+y-5=0C.2x-y-4=0D.2x+y-8=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在直三棱柱ABC-A1B1C1中,D是BC的中点.
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1与平面ABC所成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=$\frac{4}{3}$.
(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知正方体ABCD-A1B1C1D1,点E,F分别是棱BC,CC1的中点,Q是侧面BCC1B1内一点,若A1Q∥平面AEF,则点Q的轨迹为(  )
A.一个点B.两个点C.一条线段D.两条线段

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{2x+1}{x+1}$的值域是(  )
A.(-∞,2)∪(2,+∞)B.(-∞,-2)∪(-2,+∞)C.(-∞,$\frac{5}{2}$)∪($\frac{5}{2}$,+∞)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{5}{8}$,$\frac{13}{16}$,-$\frac{29}{32}$,$\frac{61}{64}$,…的通项公式是an=(-1)n•$\frac{{2}^{n}-3}{{2}^{n}}$.

查看答案和解析>>

同步练习册答案